United States Patent

US006654907B2

(12) (10) Patent No.: US 6,654,907 B2
Stanfill et al. 5) Date of Patent: Nov. 25, 2003
(54) CONTINUOUS FLOW COMPUTE POINT 5,966,072 A * 10/1999 Stanfill et al. 340/440
BASED DATA PROCESSING 6,401,216 Bl * 6/2002 Meth et al.c.e.. 714/16
(75) Inventors: Craig W. Stanfill, Waltham, MA (US); * cited by examiner
Richard A. Shapiro, Arlington, MA
(US); Stephen A. Kukolich, Lexington,
MA (US) Primary Examiner—Scott Baderman
(74) Antorney, Agent, or Firm—Fish & Richardson P.C.
(73) Assignee: Ab Initio Software Corporation,
Lexington, MA (US)
57 ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 A data processing system and method that provides two
U.S.C. 154(b) by 385 days. processes, checkpointing and compute point propagation,
and permits a continuous flow of data processing by allow-
(21) Appl. No.: 09/731,234 ing each process to (1) return to normal operation after
) checkpointing or (2) respond to receipt of a compute point
(22) Filed: Dec. 5, 2000 indicator, independently of the time required by other pro-
(65) Prior Publication Data cesses for similar responsive actions. Checkpointing makes
use of a command message from a checkpoint processor that
US 2001/0042224 A1 Nov. 15, 2001 sequentially propagates through a process stage from data
Related U.S. Application Data sources through processes to data sinks, triggering each
process to checkpoint its state and then pass on a check-
(63) Continuation-in-part of application No. 09/608,995, filed on pointing message to connected “downstream” processes. A
Tun. 30, 2000. compute point indicator marks blocks of records that should
(60) Provisional application No. 60/169,097, filed on Dec. 6, be processed as a group within each process. A compute
1999. point indicator is triggered and sequentially propagates
(51) Int. CL7 o, GO6F 11/00 through a process stage from data sources through processes
(52) US.Cl oo 714/16; 712/221 to data sinks without external control. Compute point indi-
(58) Field of Searchccooo........ 714/16, 17,51; cators also effectively self-synchronize multiple data flows
712/221, 228 without external control. Use of compute point indicators
rather than checkpoints avoids the time delay that saving
(56) References Cited state imposes, while permitting a continuous flow of data

U.S. PATENT DOCUMENTS

4922418 A * 5/1990 Dolecek 714/51

Ultimate
Source

processing, including outputting results.

27 Claims, 13 Drawing Sheets

I
Data Data |
Queue Queue |
|
08 212
204 206 210 |
|
Data Ultimate
Queue | Consumer
206' 210
08’ 10 :
Data Data |
Queue Queue |
l

U.S. Patent Nov. 25, 2003 Sheet 1 of 13 US 6,654,907 B2

Ultimate
Source

106 /108 110

Data
Queue

Data

11
Queue 2

Continuous
Process

Single
Continuous
Process

Ultimate

Queue Consumer

Single
Continuous
Process

Data
Queue

Data
Queue

|
I
I
[

|
|
I
|
I
: Data
|
!
|
I
|

FIG. 1
Prior Art

U.S. Patent Nov. 25, 2003 Sheet 2 of 13 US 6,654,907 B2

Ultimate
Source

Data Data
Queue Queue
Data
Queue |
I
I
Data Data |
Queue Queue |
|

212

Ultimate
Consumer

FIG. 2

U.S. Patent Nov. 25, 2003 Sheet 3 of 13 US 6,654,907 B2

300

Checkpoint
Processor

Data Source
Process

Data Sink
Process

303 FIG. 3 309

U.S. Patent

Nov. 25, 2003

Sheet 4 of 13 US 6,654,907 B2

\ Current
Begin lLocation lEnd
402 /]400 404
Older J | J \ { ’ , Newer
Discarded Current Unavailable
FIG. 4
Data Queue
CCP RCP
602 600
/ A l /
Older Newer
Reclaimable Potentially Unprocessed
FIG. 6
Input Data Queue
CCP RCP
702 700
\ l /
oder OO > Nower
Published Publishable

FIG. 7
Output Data Queue

U.S. Patent Nov. 25, 2003 Sheet 5 of 13 US 6,654,907 B2

Checkpoint Processor Data Sources 504
500
Complete or
. suspend
CP triggered? pending
computations
Yes 502 506
. 4 ' y
Generate & Delete previous
Transmit CP CP Records &
Request Msg reclaim storage
508
Create CP
Record
510
A
Optionally,
reclaim data
queue space
512
Propagate
CP Message
514
4

FIG. 5A Resume
processing

U.S. Patent Nov. 25, 2003 Sheet 6 of 13 US 6,654,907 B2

Processes
516 524
y
Complete or
suspend Create new
pending CP Record
computations
518 526
4 y
Save received Propagate
CP Messages CP Message
520 528
y
Suspend
reading from Res“"‘.e
Sources processing
522
Delete previous
CP Records &
reclaim storage
L

FIG. 5B

U.S. Patent

FIG. 5C

Nov. 25, 2003

Sheet 7 of 13

Data Sinks

On

Complete or
suspend
pending

computations

l

Delete previous
CP Records &
reclaim storage

l

Create
Checkpoint
Record

l

Optionally,
reclaim data
queue space

l

Tag & store any
existing output

Transmit
CP Message to
CP Processor

530

532

534

536

538

540

US 6,654,907 B2

U.S. Patent

Nov. 25, 2003

Checkpoint Processor

542

O

Increments &
stores
CCP value

544

Transmits new
CCP value to
all Sinks

@

FIG.

Sheet 8 of 13

US 6,654,907 B2

Data Sinks

(-

Publishes
tagged buffered
data

Resumes
processing

=

SD

y

546

548

U.S. Patent

Nov. 25, 2003 Sheet 9 of 13 US 6,654,907 B2
800
Restart all
Processes

l 802

Reestablish all
communication

l 804

Transmit
Recovery
Message

l 806

Each Source,
Process, & Sink
restores state

|
=)

FIG. 8

U.S. Patent

Nov. 25, 2003

FIG. 9

Sheet 10 of 13

Sources scan
data for TS/BP
value

l

Complete
pending
operations

l

Sources send
EOD message

l

Sources
request
checkpointing

l

Checkpoint

Processor

issues CP
Request Msg

e

900

902

904

906

908

US 6,654,907 B2

U.S. Patent Nov. 25, 2003 Sheet 11 of 13 US 6,654,907 B2

Data Sources
(Subscribers)

1000

Yes 1002

Read current
block of records
and output

l 1004

Generate
Compute Point
Indicator (CPI)

l 1006

Propagate
CPI

FIG. 10A

U.S. Patent

Nov. 25, 2003

Intermediate
Processes

1010

All CPI's
received?

Yes 1012
4

Process current
block of
records, &
output

l 1014

Propagate
CPI

Sheet 12 of 13

FIG. 10B

Data Sinks
(Publishers)

1018

All CPI's
received?

Yes
4

Publish Data for
current block of
records

US 6,654,907 B2

1020

U.S. Patent Nov. 25, 2003 Sheet 13 of 13 US 6,654,907 B2

1108a 1110a

Downstream
Processes

1114a
1104 1102 / 1108b 1110b

Upstream
Processes

Publisher
Process

Downstream
Processes

1114c 1108¢ 1110¢c

1112

Downstream
Processes

FIG. 11

US 6,654,907 B2

1

CONTINUOUS FLOW COMPUTE POINT
BASED DATA PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part application of
and claims priority to U.S. application Ser. No. 09/608,995,
filed on Jun. 30, 2000, which claimed priority to U.S.
application Ser. No. 60/169,097, filed on Dec. 6, 1999.

TECHNICAL FIELD

This invention relates to data processing, and more par-
ticularly to a system, method, and computer program for
continuous flow data processing.

BACKGROUND

With the huge popularity of the Internet for data access
and electronic commerce comes a need for high-
performance, fault tolerant “back-office” processing capa-
bilities that allow large volumes of data to be processed
essentially continuously and in near real-time (i.e., respond-
ing to a user’s input within a few seconds to a few minutes).
Such processing capabilities should be robust (i ., fault
tolerant) to allow processing to continue where it left off
after a failure. While such capabilities are useful for large-
scale Internet-based data processing, they are often also
applicable to conventional types of data processing over
private networks and communication systems (e.g., airline
reservation systems, internal corporate “intranets”, etc.).

Achieving high performance for a particular volume of
data often means using a parallel processing system to
process the data within a reasonable response time. Numer-
ous examples of parallel processing systems are known. For
example, FIG. 1 is a block diagram of a typical prior art
multi-process data processing system 100. Data from an
ultimate source 101 (e.g., a web server) is communicated to
at least one data queue 102. Data is read, or “consumed”,
from time to time by an initial process 104, which outputs
processed data to one or more data queues 106, 106'. The
process 104 typically is a single process that uses a two-
phase commit protocol to coordinate consumption of input
data and propagation of output data, in known fashion.
Subsequent processes 108, 108' may be linked (shown as
being in parallel) to provide additional processing and
output to subsequent data queues 110, 110'. The data is
finally output to an ultimate consumer 112, such as a
relational database management system (RDBMS). In
practice, such a system may have many processes, and more
parallelism than is shown. Further, each process may con-
sume data from multiple data queues, and output data to
multiple data queues.

To obtain fault tolerance, such systems have used “check-
pointing” techniques that allow a computational system to
be “rolled back” to a known, good set of data and machine
state. In particular, checkpointing allows the application to
be continued from a checkpoint that captures an intermedi-
ate state of the computation, rather than re-running the entire
application from the beginning. Examples of checkpointing
systems are described in U.S. Pat. No. 5,819,021, entitled
“Overpositioning System and Method for Increasing Check-
points in Component-Based Parallel Applications”, and U.S.
Pat. No. 5,712,971, entitled “Methods and Systems for
Reconstructing the State of a Computation”, both assigned
to the assignee of the present invention.

A problem with using traditional checkpointing tech-
niques with data where essentially continuous data process-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing is desired (e.g., Internet data processing) is that check-
points may only be created when the system is quiescent,
i.e., when no processes are executing. Thus, every process
would have to suspend execution for the time required by the
process that requires the longest time to save its state. Such
suspension may adversely impact continuous processing of
data.

Accordingly, the inventors have determined that there is
a need to provide for a data processing system and method
that provides checkpointing and permits a continuous flow
of data processing by allowing each process to return to
operation after checkpointing, independently of the time
required by other processes to checkpoint their state. The
inventors have also determined that, in the context of
continuous flow data processing, that there is a need for a
method and system for intermittently inducing execution of
computational processes and output of data without having
to checkpoint the system, thus saving time while enabling
execution of processes that necessarily operate on a quantity
of data records (e.g., sorting or certain statistical processes).
The present invention provides a method, system, and
computer program that provides these and other benefits.

SUMMARY

The invention includes a data processing system and
method that provides two processes, checkpointing and
compute point propagation, and permits a continuous flow
of data processing by allowing each process to (1) return to
normal operation after checkpointing or (2) respond to
receipt of a compute point indicator, independently of the
time required by other processes for similar responsive
actions.

In particular, checkpointing in accordance with the inven-
tion makes use of a command message from a checkpoint
processor that sequentially propagates through a process
stage from data sources through processes to data sinks,
triggering each process to checkpoint its state and then pass
on a checkpointing message to connected “downstream”
processes. This approach provides checkpointing and per-
mits a continuous flow of data processing by allowing each
process to return to normal operation after checkpointing,
independently of the time required by other processes to
checkpoint their state. This approach reduces “end-to-end
latency” for each process stage (i.e., the total processing
time for data from a data source to a data sink in a process
stage), which in turn reduces end-to-end latency for the
entire data processing system. Importantly, once checkpoint-
ing has been initiated, it propagates through each process
without external control in a self-synchronizing manner.

More particularly, this aspect of the invention includes a
method, system, and computer program for continuous flow
checkpointing in a data processing system having at least
one process stage comprising a data flow and at least two
processes linked by the data flow, including propagating at
least one command message through the process stage as
part of the data flow, and checkpointing each process within
the process stage in response to receipt by each process of
at least one command message.

In another aspect of the invention, a compute point
indicator is triggered and sequentially propagates through a
process stage from data sources through processes to data
sinks. The trigger event may be an external or internal event,
and is usually directly detected by a data source. Optionally,
a detected trigger event may be routed through an external
processor which then initiates a compute point process.
Importantly, once compute point indicator propagation has

US 6,654,907 B2

3

been initiated, the indicator propagates through each process
without external control. Compute point indicators are used
to mark blocks of records that should be processed as a
group within each process. When there are multiple data
flows going into a process, compute point indicators also
effectively self-synchronize the data flows without external
control. Compute point indicators mark the boundaries
between blocks of data records simply by existing. When a
process receives a compute point indicator, it waits for the
corresponding compute indicator to be received on all of its
input flows (if it has more than one input), then it does
whatever blockwise computation function is appropriate for
the component (e.g., sum or sort the data). The process then
outputs the results of the computation. If the process is not
a data sink, it also outputs the compute point indicator to any
coupled downstream process. When a data sink receives a
compute point indicator, it outputs whatever data it has
available. Use of compute point indicators rather than check-
points avoids the time delay that saving state imposes, while
permitting a continuous flow of data processing, including
outputting results.

More particularly, this aspect of the invention includes a
method, system, and computer program for initiating pro-
cessing of blocks of data within at least one flow of data
input to a data processing system having a plurality of
process stages, including at least one subscriber process
stage, at least one publisher process stage, and optionally at
least one intermediate process stage, the method including
generating a compute point indicator in response to a trigger
event; propagating the compute point indicator from each
subscriber process stage through any intermediate process
stages to each publisher process stage as part of the flow of
data; and, for each process stage, processing a current block
of data associated with the process stage in response to
receipt by the process stage of at least one compute point
indicator from an immediately previous process stage asso-
ciated with the process stage.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a prior art data processing
system that may be used in conjunction with the present
invention.

FIG. 2 is a block diagram of a continuous flow data
processing system in accordance with the invention.

FIG. 3 is block diagram of one process stage in accor-
dance with the invention.

FIG. 4 is a diagram of a data queue suitable for use with
the invention.

FIGS. 5A-5D are a flowchart showing one embodiment
of a method for initiating a checkpoint in a process stage of
a continuous flow checkpointing data processing system.

FIG. 6 is a diagram of an input data queue for a continu-
ous flow checkpointing data processing system.

FIG. 7 is a diagram of an output data queue for a
continuous flow checkpointing data processing system.

FIG. 8 is a flowchart of a method for recovery of state
when a system failure occurs after a checkpointing event.

FIG. 9 is a flowchart of one method for coordinating
checkpointing based on data values.

FIGS. 10A-10B are a flowchart showing one embodiment
of a method for propagating a compute point indicator in a
process stage of a continuous flow data processing system.

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 is a diagram of two continuous flow data pro-
cessing graphs connected by a first-in, first-out graph queue.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION
Overview

FIG. 2 is a block diagram of a continuous flow data
processing system 200 in accordance with the invention.
Data from one or more ultimate sources 201 (e.g., a web
server) is communicated to at least one data queue 202 (for
clarity, only one ultimate source 201 and one data queue 202
are shown). Data is read, or “consumed”, from time to time
by an initial process stage 204 of one or more parallel sets
of sequentially linked processes, each of which outputs
processed data to one or more data queues 206, 206'.
Subsequent process stages 208, 208' may be linked (shown
as being in parallel) to provide additional processing and
output to subsequent data queues 210, 210'. The data is
finally output to an ultimate consumer 212, such as a
relational database management system (RDBMS). The
entire set of processes forms an acyclic graph. Within a
process stage, the processes being performed by each par-
allel set of linked processes is the same. In practice, such a
system may have many process stages, and more parallelism
than is shown. Further, each process may consume data from
multiple data queues, and output data to multiple data
queues.

FIG. 3 is block diagram of one process stage in accor-
dance with the invention. Each process stage forms an
acyclic graph. A Checkpoint Processor 300 is coupled by
communication channels 301 to all data Sources 302, 302,
and data Sinks 308, 308', and optionally to all intermediate
Processes 304, 304' . . . 306, 306', comprising the process
stage. Generally, all communication channels 301 are
bi-directional.

Data Sources (“Sources”) 302, 302' are processes that
access associated data queues 303 for receiving and storing
input data (e.g., user queries) and from which data can be
read. Each Source can checkpoint the data in its data queue
so that, upon a system failure, data subsequent to a check-
point can be re-read.

Data Sinks (“Sinks™) 308, 308' are processes that access
associated data queues 309 for receiving processed data and
from which data can be output or published (e.g., printed,
displayed, or stored) from time to time. Each Sink can
checkpoint the data in its data queue so that, upon a system
failure, data subsequent to a checkpoint can be re-output.

Processes 304, 304' . . . 306, 306' directly or indirectly
receive input from one or more Sources 302, 302' and
ultimately output results to a Sink 308, 308'. A Process can
checkpoint its data and processing state so that, upon a
system failure, the state can be reconstructed and processing
can continue from the last checkpoint without loss of data.

Initial parallel Processes 304, 304' within a stage may be
coupled in parallel to multiple partitioned Sources 304, 304'
that contain similar data types, and may also be coupled to
multiple independent Sources that may contain dissimilar
data types. Final parallel Processes 306, 306' within a stage
may be coupled in parallel to multiple partitioned Sinks 308,
308', and may also be coupled to multiple independent
Sinks. A Sink for one Process may be a Source for a
subsequent process stage. Data flow is unidirectional, from
Sources, through Processes, to Sinks. Processes optionally
may be omitted, such that Sinks directly connect to Sources.
Control messages that propagate through a stage do not
bypass data, but are processed in sequential order of occur-
rence.

US 6,654,907 B2

5

FIG. 4 is a diagram of a data queue suitable for use with
the invention. Data records are stored in a logically linear
queue, sequentially arranged from older to newer in time.
The actual physical storage may be in a random access
memory or on media. The queue is typically divided into a
set of current records 400, discardable records 402, and
unavailable records 404. Unavailable records 404 may be,
for example, data records that have been received from an
external source and stored, but not yet made available for
processing. Discardable records 402 are records that have
been consumed or published, but whose storage space has
not yet been reclaimed.

A Current Location pointer may be used to indicate a
current record. A “begin” pointer is typically used to demar-
cate discarded records from current records, and an “end”
pointer is typically used to demarcate current records from
unavailable records.

Continuous Flow Checkpointing

An important aspect of the invention is that checkpointing
makes use of a command message from the Checkpoint
Processor 300 that sequentially propagates through a process
stage from Sources 302 through Processes 304, 306 to Sinks
308, triggering each process to checkpoint its state and then
pass on a checkpointing message to connected “down-
stream” processes. This approach provides checkpointing
and permits a continuous flow of data processing by allow-
ing each triggered process to return to normal operation after
checkpointing, independently of the time required by other
processes to checkpoint their state. This approach reduces
“end-to-end latency” for each process stage (i.c., the total
processing time for data from a Source to a Sink in a process
stage), which in turn reduces end-to-end latency for the
entire data processing system 200. Thus, a graph can pro-
duce usable output while a job is still running. Importantly,
once checkpointing has been initiated, it propagates through
each process without external control in a self-synchronizing
manner. Further, input data that was taken in at a time prior
to the last saved state (a “committed checkpoint” in con-
tinuous flow terminology) may be safely deleted, because it
will not be needed again by the graph.

FIGS. 5A-5D are a flowchart showing one embodiment
of a method for initiating a checkpoint in a process stage of
a continuous flow checkpointing data processing system.
FIG. 6 is a diagram of an input data queue for a continuous
flow checkpointing data processing system. FIG. 7 is a
diagram of an output data queue for a continuous flow
checkpointing data processing system.

1. Checkpoint Processor:

Step 500: Determines that a Checkpoint (CP) trigger
event has occurred. A checkpoint may be triggered in a
number of ways, as discussed below.

Step 502: Generates a Checkpoint Request Message and
transmits it to each Source. The Checkpoint Request
Message includes values for a “Requested Checkpoint”
(RCP) flag and a “Committed Checkpoint” (CCP) flag
(Step 502). In the preferred embodiment, these values
are numeric, and the RCP value is always greater than
the CCP value. For example, initially, the respective
values of the RCP and the CCP for a first checkpoint
event might be “1, 0”.

2. Sources—Upon receipt of a Checkpoint Request

Message, each Source:

Step 504: Either completes pending computations, or
suspends any pending computations and saves them as
part of checkpointing.

Step 506: Deletes any previously existing Checkpoint
Record that is older than the last checkpoint that was

10

15

20

25

30

35

40

45

50

55

60

65

6

fully committed by the Checkpoint Processor 300 con-
trolling the whole graph (this last committed check-
point value is also included in the Checkpoint Request
Message, and is not to be confused with the new
checkpoint value corresponding to the new checkpoint
being created), and optionally reclaims the associated
storage space. When numeric values are used, records
may be deleted that have a CCP tag or index that is less
than the current CCP value. If numeric values are not
used (e.g., Boolean flags are used) for the two check-
point values, care must be taken to delete records
corresponding to “old” Checkpoint Records before
storing the current CCP value over an old CCP value.
Although reclaiming Checkpoint Record storage may
be done in a different order, deleting at this point in the
process frees storage space up earlier rather than later.

Step 508: Creates a Checkpoint Record in non-volatile
storage (e.g., magnetic media, such as a hard disk
drive) in sufficient detail to reconstruct the state of the
Source as of the generation of the Checkpoint Record
(i e., it “saves state”). Each Checkpoint Record
includes the current “read” position in the Source’s data
queue, and is tagged or indexed with the RCP from the
Checkpoint Request Message (e.g., with the value “17).
FIG. 6 shows a pointer, RCP, to a data record in a queue
of potentially unprocessed data 600 in an input data
queue where the RCP Checkpoint Record event occurs.
A second pointer, CCP, points to a data record sepa-
rating potentially unprocessed data from data that had
already been processed before a prior checkpointing
event. Data records in the queue between the RCP and
CCP pointers are part of the saved state. Note that for
a subsequent checkpointing operation, the RCP pointer
is treated as the prior CCP pointer value (this occurs
automatically by using numeric values for RCP and
CCP flags and making simple arithmetic comparisons
of values).

Step 510: Optionally, reclaims any storage space in the
data queue that occurs before a saved data queue
position, CCP, indicated by the current CCP value.
Note that there may be multiple CCP pointers if mul-
tiple checkpointing operations are in progress concur-
rently. Using numeric values for RCP and CCP flags
makes matching of corresponding pointers easier by
using simple arithmetic comparisons.

Step 512: Propagates a Checkpoint Message downstream
to any Process that consumes data from the Source’s
data queue. The Checkpoint Message includes the RCP
and the CCP from the original Checkpoint Request
Message.

Step 514: Resumes processing. Thus, while downstream
processes are saving state, the Sources can receive data
and perform any other application specific functions in
preparation for providing data to Processes.

. Processes—Upon receiving each Checkpoint Message,

each Process:

Step 516: Either completes pending computations, or
suspends any pending computations and saves them as
part of checkpointing (optionally, this step may be done
after Step 520, to avoid having to save read but
unprocessed records).

Step 518: Saves each received Checkpoint Message in
non-volatile storage.

Step 520: Suspends reading from the Source that origi-
nated the received Checkpoint Message.

Step 522: Upon receiving Checkpoint Messages from all
connected Sources or upstream Processes (as deter-

US 6,654,907 B2

7

mined from the saved Checkpoint Messages), deletes
any previously existing Checkpoint Record that does
not correspond to the current CCP value as indicated in
the Checkpoint Request Message, and optionally
reclaims the associated storage space.

Step 524: Creates a Checkpoint Record in non-volatile
storage that includes the current processing state
(including any read but unprocessed records), and
which is tagged or indexed with the current RCP value.

Step 526: Propagates a Checkpoint Message “down-
stream” to any connected Process or Sink. Again, the
Checkpoint Message includes the RCP and the CCP
from the original Checkpoint Request Message.

Step 528: Resumes processing.
. Sinks—Upon receiving Checkpoint Messages from all
connected Processes or Sources, each Sink:

Step 530: Either completes pending computations, or
suspends any pending computations and saves them as
part of checkpointing.

Step 532: Deletes any previously existing Checkpoint
Record that does not correspond to the current CCP
value as indicated in the Checkpoint Request Message,
and optionally reclaims the associated storage space.

Step 534: Creates a Checkpoint Record in non-volatile
storage that includes the current “publishable™ position
in the Sink’s data queue, and is tagged or indexed with
the current RCP value (e.g, “1). FIG. 7 shows a pointer,
RCP, to a data record in a queue of publishable data 700
in an output data queue where the RCP Checkpoint
Record event occurs. A second pointer, CCP, points to
a data record separating publishable data from data that
had already been published before a prior checkpoint-
ing event.

Step 536: Optionally, reclaims any storage space in the
data queue that occurs before a saved data queue
position, CCP, indicated by the current CCP value.
Such data has already been published. Note that there
may be multiple CCP pointers if multiple checkpoint-
ing operations are in progress concurrently. Using
numeric values for RCP and CCP flags makes matching
of corresponding pointers easier by using simple arith-
metic comparisons.

Step 538: Causes any existing output that has not yet been
published to be stored (buffered) in non-volatile
storage, and tags the output with the current RCP value.
Such output comprises the records in the queue
between the RCP and CCP pointers.

Step 540: Transmits a Checkpoint Message to the Check-
point Processor. Again, the Checkpoint Message
includes the RCP and the CCP from the original Check-
point Request Message.

. Checkpoint Processor—Upon receiving Checkpoint Mes-
sages from all connected Sinks, the Checkpoint Proces-
sor:

Step 542: Updates or increments the stored value of the
CCP variable, and stores the new CCP value in non-
volatile storage (equivalently, the CCP variable is set to
the current value of the RCP variable from the Check-
point Messages). For example, if the respective values
of the RCP and the CCP for a checkpoint event are “1,
07, the values will be “1, 1” after this step.

Step 544: Transmits the new CCP value to all Sinks.

. Sinks—Each Sink:

Step 546: Publishes all buffered data tagged with an RCP
value equal to the received new CCP value. In the

5

10

20

25

30

35

40

45

50

60

65

8

illustrated example, such data comprises the records in
the queue between the RCP pointer (corresponding to
a value of “1”) and the CCP pointer (corresponding to
a value of “0”) in FIG. 7.

Step 548: Resumes processing.

This ends the checkpointing process. Note that some steps
may be done in a different order. For example, each Sink
may resume processing (Step 548) either before publishing
of buffered tagged data (Step 546), or after storing unpub-
lished data (Step 538), with respect to data that becomes
available after the RCP Checkpoint Record event occurs.
Recovery from a Failure

FIG. 8 is a flowchart of a method for recovery of state
when a system failure occurs after a checkpointing event.

Step 800: Restart all Processes.

Step 802: Reestablish all communication links between
Sources, Processes, Sinks, and the Checkpoint Proces-
SOT.

Step 804: Transmit a Recovery Message, including the
current CCP value, from the Checkpoint Processor to
all Sources, Processes, and Sinks.

Step 806: Each Source, Process, and Sink restores its state
as defined in its Checkpoint Record corresponding to
the received CCP value. In particular:

Each Sink publishes data occurring before the position
indicated by its Checkpoint Record corresponding to
the received CCP value, and discards any data occur-
ring after that position, taking care not to re-publish
data that has already been published. This step may
be necessary, for example, if a failure occurs after a
Sink receives a new CCP value but before it has had
time to publish its pending data records.

Each Source “rewinds” its read operation to the posi-
tion indicated by its Checkpoint Record correspond-
ing to the received CCP value.

Triggering a Checkpoint

A checkpoint operation may be triggered in a number of
ways. For example, checkpointing may be based on time and
periodically performed, or it may be based on an external
stimulus (e.g., a network operating system message of
pending network shutdown). In one embodiment of the
invention, checkpointing may be based on data values
within or derived from records being processed. For
example, the data records may include timestamps (TS) or
breakpoint (BP) values. It may be desirable to checkpoint
after completing computations for data with a particular
timestamp for breakpoint value or range. FIG. 9 is a flow-
chart of one method for coordinating checkpointing based
on pre-determined data values “known” to all processes (i.c.,
Sources, Processes, and Sinks):

Step 900: Each Source scans incoming data for the
pre-determined TS/BP value. The following steps are
performed once a triggering value is detected by at least
one Source.

Step 902: Optionally, each Source completes pending
computations.

Step 904: Optionally, each triggered Source sends an
“End of Data” (EOD) control message to all outputs.
This avoids certain deadlock scenarios where one
Source detects a triggering TS/BP value and stops
providing data records to a downstream Process. A
second Source may not have reached a triggering
TS/BP value but has filled its output buffer with data
records for consumption by the downstream Process.
The consuming Process connected to the two Sources
may futilely wait until a next data record comes from

US 6,654,907 B2

9

the first Source (which has stopped providing new
data), and never consume buffered data records from
the second Source (which cannot reach a triggering
TS/BP value in some yet-to-be-processed data record
because its output buffer is full). Hence, deadlock
results. By using an explicit EOD message, the down-
stream Process is instructed that no more data is
coming from the first Source, and thus does not futilely
wait for such data.

Step 906: Each Source sends a control message to the
Checkpoint Processor, requesting checkpointing.

Step 908: When the Checkpoint Processor receives con-
trol messages from all Sources, it issues a Checkpoint
Request Message and checkpointing progresses as
described above.

An enhancement to the above process provides a proce-
dure by which Sources and the Checkpoint Processor nego-
tiate the initiation of checkpointing. This procedure may be
useful where there must be a coordinated generation of
output (e.g., certain aggregations of data should be produced
before checkpointing) and there is no advance knowledge of
what specific BP/TS values should be used as a checkpoint-
ing trigger. In such a case, the Checkpoint Processor can poll
each Source to determine the current value of one or more
fields which can be used to determine a timestamp or
breakpoint based trigger. The Checkpoint Processor then
determines a suitable global BP/TS value, and broadcasts
that value to each Source. Processing then can proceed as
described with respect to FIG. 9.

Another aspect of some embodiments of the invention is
that they can reduce the overhead burden of checkpointing
by coordinating checkpoint events with periodic production
of output (e.g., aggregations that consume a number of
records to produce one record). For example, it may be more
efficient to aggregate and publish data and then run a
checkpoint, so that the amount of state to save is reduced
(e.g., less in-process data has to be saved). Accordingly, the
issuance of Checkpoint Request Messages can be coordi-
nated with publication of data reduction or aggregation
operations. Such coordination may be set up by a program-
mer. Alternatively, coordination may be automatically trig-
gered by having each Sink send a control message to the
Checkpoint Processor after performing a data reduction or
aggregation operation. The Checkpoint Processor can then
initiate a checkpoint operation after receiving a control
message from each Sink. As another alternative, a Check-
point Message may be used to trigger publication of a data
reduction or aggregation operation. That is, the Checkpoint
Message serves as an indicator that all the data records in a
group to be aggregated or reduced have been received.
Job Shutdown

It is preferable to use an explicit “Job Shutdown” proce-
dure with embodiments of the invention of the type
described above. Such a procedure insures that each process
of the data processing system distinguishes an orderly
shutdown of processing from a failure of an upstream
process. One procedure that may be used is to have the
Checkpoint Processor notify each Source to terminate pro-
cessing. For example, the Checkpoint Processor may be
notified to shutdown based on a schedule or from an external
trigger, such as an operating system message. In turn, the
Checkpoint Processor can initiate a checkpoint operation
and send an “End of Job” (EOJ) message to all sources. A
convenient way of sending the EOJ message is to tag a
normal Checkpoint Request Message with an EOJ flag. On
receiving an EOJ flag, each Source performs a normal
checkpoint routine but exits instead of resumes operation.

10

15

20

25

30

35

40

45

50

55

60

65

10

As described above, each Source propagates a Checkpoint
Message downstream. Each Process similarly performs a
normal checkpoint routine and exits instead of resuming
operation. When a Checkpoint Message propagates down to
Sinks, each Sink similarly performs a normal checkpoint
routine. However, each Sink only exits after the Checkpoint
Processor returns a new CCP value and the Sink publishes
pending data, as described above.

Early Publication

Under some circumstances, Sinks may publish data ear-
lier than indicated in the procedure above. Early publication
provides further improvements in end-to-end latency. For
example, Sinks can publish data records early under the
following conditions:

If pending unpublished record values are deterministic,
then they may be published after Step 538 (FIG. 5C).
“Deterministic” means that the same data records will
be produced after a restart, although the order may
differ. Whether this condition holds true is a property of
each application, and is determined by a programmer.
For a restart operation to recover from a failure, Sinks
discard any recomputed data records that would over-
write data records that have been published early, so
that duplicate records are not published.

If pending unpublished record values are deterministic
AND ordered (i.e., they are monotonically increasing
or decreasing), then they may be published at any time
after receiving a checkpoint message. This shortens
latency even more. Again, whether this condition holds
true is a property of each application, and Sinks discard
any recomputed data records computed during a restart
that would overwrite data records that have been pub-
lished early.

If republishing the same data records is acceptable, then
they may be published at any time after receiving a
checkpoint message. Such a situation may arise where
timeliness is more important than exactness (e.g., real-
time “hit” statistics).

Compute Point Indicators

As described above, continuous flow graphs are able to
run indefinitely, and are able to constantly process new
records to give new outputs after each checkpointing event.
However, it is also useful to be able to intermittently induce
execution of computational processes and output of data
without having to checkpoint the system, thus saving time
while enabling execution of processes that necessarily oper-
ate on a quantity of data records (e.g., sorting or certain
statistical processes).

Accordingly, another aspect of the invention is use of “in
stream” compute point indicators. Compute point indicators
are extra packets of data that are effectively sent between
records on data flow streams to a continuous flow data
processing system 200. These indicators are preferably
created by data sources, or subscribers, which can continu-
ally read input records, and are consumed by data sinks, or
publishers, which can continually write new records.

Compute point indicators are used to mark blocks of
records that should be processed as a group. Compute point
indicators effectively mark the boundaries between blocks of
data simply by existing. In addition, when multiple data
flows converge as inputs to a component, compute point
indicators also effectively synchronize the data flows by
indicating which blocks of data correspond to which data
flow. Importantly, once compute point indicator propagation
has been initiated, the indicator propagates through each
process without need for any external control or interven-
tion.

US 6,654,907 B2

11

FIGS. 10A-10B are a flowchart showing one embodiment
of a method for propagating a compute point indicator in a
process stage of a continuous flow data processing system.
To begin with, a compute point indicator (CPI) can be
triggered by any of a variety of ways. For example, a CPI
trigger event may be based on time and periodically
performed, or it may be based on an external stimulus (e.g.,
user intervention). In one embodiment of the invention,
triggering of a CPI may be based on data values within or
derived from records being processed. For example, the data
records may include timestamps (TS) or breakpoint (BP)
values. It may be desirable to checkpoint after completing
computations for data with a particular timestamp for break-
point value or range.

In the preferred embodiment, each subscriber component
determines if a compute point (i.e., a point in time for issuing
a CPI) has been triggered (Step 1000). Each subscriber then
reads a current block of data records and outputs the block
to each directly connected subsequent (“downstream”) inter-
mediate process or publisher (Step 1002), and generates a
CPI (Step 1004). The subscriber then propagates the CPI to
each directly connected process (Step 1006).

In the preferred embodiment, each compute point is
simply a data packet or record that can propagate through the
components of a process stage. Preferably, each CPI
includes a unique sequence number. All subscribers should
issue compute point indicators in the same sequence. In
addition, it is desirable that compute point indicators be
generated by each subscriber at about the same time.
Otherwise, a component that takes multiple inputs may
spend much of its time simply waiting for a corresponding
CPI on one of its inputs after having received a CPI on
another input. Synchronization of CPI generation may be
accomplished in a variety of manners, including issuance of
a message by a triggered subscriber to a master processor
(e.g., similar to the Checkpoint Processor 300 of FIG. 3),
which sends notification messages to all other subscribers.

In one embodiment, the block of data records may be
stored as one file in a continuous sequence of input files. As
new data begins to accumulate after a compute point occurs
(e.g., new entries in a web log), that data is written to a new
file in the sequence. This new file becomes the next file
processed after a next compute point (or a checkpointing
event) is triggered. Each subscriber is configured to read the
next file in sequence. Subscribers may also perform addi-
tional functions, such as formatting of data.

In an alternative embodiment, the order of Steps 1002 and
1004 can be switched. Further, a master processor (e.g.,
similar to the checkpoint processor 300 in FIG. 3) can
determine whether a compute point has been triggered, and
propagate a CPI to each subscriber, triggering the subscriber
to read a current block of data records.

When an intermediate process component receives a CPI,
it waits for a corresponding CPI (i.e., having the same
sequence number) to be received on all of its input flows if
it has more than one input (Step 1010). Each intermediate
process then does whatever blockwise computation is appro-
priate for the process component (e.g., sum or sort) on the
current data block output by a subscriber or prior
(“upstream”) intermediate process, and output the results of
the computation (Step 1012). Each intermediate process
then propagates the CPI to each downstream intermediate
process or publisher (Step 1014).

When a publisher receives a CPI, it waits for a corre-
sponding CPI (i.e., having the same sequence number) to be
received on all of its input flows if it has more than one input
(Step 1018). The publisher then outputs whatever data it has
available (Step 1020).

10

15

20

25

30

35

40

45

50

55

60

65

12

The output data records are preferably stored as one file
in a continuous sequence of output files. After the next
compute point (or checkpointing event), published data is
written to a new file in the sequence. Each publisher is
configured to write to the next file in sequence. However, a
variety of output modes can be used, including outputting to
a queue or appending to a single file. In the preferred
embodiment, each Publisher keeps track of which data
records have been published, so that data is not republished
inadvertently. Publishers may also perform additional
functions, such as formatting of data.

Checkpoint messages also have the same functionality as
compute point indicators, in that they also force computa-
tions to be done and data to be output. However, checkpoint
messages have a greater impact on system performance than
compute point indicators, because they are much more likely
to cause a brief slow-down in the graph system while the
graph waits for state data to be written to storage. Thus, it
may be desirable to generate checkpointing events relatively
infrequently (generally not more often than once every few
minutes). Compute point indicators may be generated as
frequently as desired for triggering processing of a current
block of data. As one example, in a particular configuration,
as many as 1,000 computer points per second have been
generated.

Examples of CPI Triggers

Following are some choices for triggering generation of a
compute point indicator in a practical embodiment.
Preferably, each choice is made by simply selecting a
parameter for each subscriber process component. Alterna-
tive methods of triggering a compute point indicator
(including the same methods for triggering checkpointing)
may also be used.

none—No CPIs are ever sent. This mode allows the

subscriber component to be used in ordinary non-
continuous graphs, to read data files in one of the
continuous formats.
infile-boundary—A CPI is issued when a “true” end-of-
file has been detected. A “true” end-of-file (EOF)
usually means that incoming data is being written to a
new sequential file. Waiting for more data to be
appended to a current file does not count as a “true”
EOF, because data tends to dribble through a continu-
ous process, thus ordinary EOFs can be seen at random
times depending on when processes are allocated
(CPU) run time by the computer.

record-count—Every time a fixed number of new records
is passed to the out port of the subscriber, those records
are followed by a CPI. The constant fixed number is
determined by a “compute point-interval” parameter.

time-interval—CPIs are sent every time a new time
interval has passed. The time interval may be
determined, for example, by an environment variable
which gives an integer number of seconds.

data-driven—This mode uses user-written functions to
determine when to send CPIs.

Graph Buffering

Large continuous flow graphs may be difficult to design
and debug, and checkpointing such a graph may result in a
relatively long end-to-end latency. Accordingly, it may be
useful to break up a large graph into several smaller con-
tinuous flow graphs that communicate data to one another.
Each smaller graph may be checkpointed independently of
the other graphs at different intervals. Further, using inter-
communicating graphs allows computational resources to
become disconnected, without losing the ability to obtain
output information.

US 6,654,907 B2

13

In the preferred embodiment, first-in-first-out “graph
queues” are used to buffer data between continuous flow
graphs. The buffering may be accomplished by means of
disks or similar non-volatile storage devices. Graph queues
also provide a good way to get data into and out of a
continuous flow graph.

FIG. 11 is a diagram of two continuous flow data pro-
cessing graphs connected by a first-in, first-out graph queue.
A publisher process 1102, coupled to upstream graph pro-
cesses 1104, writes data to a graph queue 1106, which
preferably comprises a set of sequential files in a hierarchi-
cal directory structure (described in more detail below). One
or more subscriber processes 11084—1108¢ can read from
the graph queue 1104. Each subscriber process 1108a—1108¢
provides data records to respective downstream graph pro-
cesses 1110a-1110c.

An important feature of graph queues is reliability. In the
preferred embodiment, a graph queue includes not only data
record files but cursor files associated with each subscriber
process. Each cursor file indicates for its associated sub-
scriber process exactly where the last record was read, for
that particular subscriber). For the whole queue there is just
one “write” cursor, which indicates the position of the last
record written to for every publisher and subscriber process
accessing the queue. The cursor information may conve-
niently be expressed as a generation number (i.e., the current
sequence number in a set of data files), and a byte offset from
the beginning of a data file. During checkpointing, this
cursor information is saved by subscriber and publisher
components. As long as graph queues are used for inputs and
outputs for a graph, with very rare exception, the graph can
always be automatically restarted from the last checkpoint
since the exact read and write cursor positions for each data
file are stored as part of the checkpoint data. If ordinary data
files are used, there is a greater chance of getting repeated
data (unless a user intervenes), because a process crash
might occur between two critical writes to storage.

Referring to FIG. 11, a write cursor 1112 tracks the current
write position (i.e., a record position within a data file) in the
graph queue 1106. When the publisher process 1102 finishes
writing a record to the file indicated by the current write
position, the value of the write cursor 1112 is incremented to
indicate the next write position (i.e., the next record position
in the data file) has become the current write position in the
graph queue 1106. Similarly, one or more read cursors
1114a-1114c track the current read position (i.e., a record
position within a data file) in the graph queue 1106 for
corresponding subscriber processes 1108a—1108c.

Graph Queue Directory Structures

As noted above, graph queues comprise data files stored
on non-volatile storage devices. In the preferred
embodiment, each graph queue comprises a hierarchical
data directory structure, for ease of use. Conceptually, a
publisher writes a sequence of data files, each containing
data records, to a main directory. Each compute point (or
checkpoint) indicator causes the publisher to make available
(publish) any blocks of data it has received since the last
compute point (or checkpoint) indicator. In order to maintain
a sequence for such files in the preferred embodiment, an
integer generation number is used as the file name extension.
The generation number is incremented after each block of
data is published, and the publisher can begin writing
records to a new data file. Further, conceptually, the “cur-
rent” published data file in the main directory is copied into
a set of subdirectories, one for each subscriber, and the copy
of the file in the main directory is removed. Each subscriber
(possibly each in different graphs) can then read and delete

10

15

20

25

30

35

40

45

50

55

60

65

14

from its “current” data file as needed independently of other
subscribers. Following is an example of what a conceptual
graph queue directory hierarchy might look like:

queue__top/
data.00000006

top level or main queue directory
data file being written by publisher, but not yet
made available to subscribers

subscribe.sub1/ # first subscriber directory

data.00000003 # data file being read
data.00000004 # data file not yet read
data.00000005 # data file not yet read
subscribe.sub2/ # second subscriber dir.
data.00000002 # data file being read
data.00000003 # data file not yet read
data.00000004 # data file not yet read
data.00000005 # data file not yet read

The preferred embodiment improves upon this conceptu-
alization in two ways. First, instead of physically copying
each data file to each subdirectory, a link (e.g., a UNIX hard
link) is created within each subdirectory to the file located in
main directory. This means that there will be only one copy
of each actual published data file on the storage device, with
multiple references to it. When all of the reference links to
an actual data file are deleted, the operating system may
delete the actual file.

Second, separate cursor files in created in the main
directory and in each of the subscriber subdirectories, con-
taining cursor information as described above. Thus, the
read position of each subscriber for its “current” data file can
be saved as part of checkpointing. Following is an example
of what an improved graph queue directory hierarchy might
look like:

queue__top/ # top level or main queue directory
cursor # write cursor file
data.00000002 # published data file
data.00000003 # published data file
data.00000004 # published data file
data.00000005 # published data file
data.00000006 # data file being written by publisher, but not yet

made available to subscribers
first subscriber directory
sub1 subscriber read cursor file

subscribe.sub1/
cursor

1ink.00000003 # link to data file being read
1ink.00000004 # link to data file not yet read
1ink.00000005 # link to data file not yet read
subscribe.sub2/ # second subscriber dir.

cursor # sub2 subscriber read cursor file
1ink.00000002 # link to data file being read
1ink.00000003 # link to data file not yet read
1ink.00000004 # link to data file not yet read
1ink.00000005 # link to data file not yet read

Note that the first subscriber directory has deleted its link
to the data file data.00000002, since the first subscriber has
finished reading records from that data file.
Implementation

The invention may be implemented in hardware or
software, or a combination of both (e.g., programmable
logic arrays). Unless otherwise specified, the algorithms
included as part of the invention are not inherently related to
any particular computer or other apparatus. In particular,
various general purpose machines may be used with pro-
grams written in accordance with the teachings herein, or it
may be more convenient to construct more specialized
apparatus to perform the required method steps. However,
preferably, the invention is implemented in one or more
computer programs executing on one or more programmable

US 6,654,907 B2

15

computer systems each comprising at least one processor, at
least one data storage system (including volatile and non-
volatile memory and/or storage elements), at least one input
device or port, and at least one output device or port. The
program code is executed on the processors to perform the
functions described herein.

Each such program may be implemented in any desired
computer language (including machine, assembly, or high
level procedural, logical, or object oriented programming
languages) to communicate with a computer system. In any
case, the language may be a compiled or interpreted lan-
guage.

Each such computer program is preferably stored on a
storage media or device (e.g., ROM, CD-ROM, or magnetic
or optical media) readable by a general or special purpose
programmable computer system, for configuring and oper-
ating the computer when the storage media or device is read
by the computer system to perform the procedures described
herein. The inventive system may also be considered to be
implemented as a computer-readable storage medium, con-
figured with a computer program, where the storage medium
so configured causes a computer system to operate in a
specific and predefined manner to perform the functions
described herein.

A number of embodiments of the present invention have
been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the invention. For example, a number
of the function steps described above may be performed in
a different order without substantially affecting overall pro-
cessing. Further, checkpointing an compute point processing
may be combined as desired (e.g., compute points may be
generated fairly frequently, interspersed by less frequent
checkpoints). Accordingly, other embodiments are within
the scope of the following claims.

What is claimed is:

1. A method for initiating processing of blocks of data
within at least one flow of data input to a graph having a
plurality of process stages, including at least one subscriber
process stage, at least one publisher process stage, and
optionally at least one intermediate process stage, the
method including:

generating a compute point indicator in response to a

trigger event;

propagating the compute point indicator through the

graph, from each subscriber process stage through any
intermediate process stages to each publisher process
stage, as part of the flow of data;

for each process stage, processing a current block of data

associated with the process stage in response to receipt
by the process stage of at least one compute point
indicator from an immediately previous process stage
associated with the process stage.

2. The method of claim 1, wherein for each process stage,
processing a current block of data associated with the
process stage is in response to receipt by the process stage
of a compute point indicator from each immediately previ-
ous process stage associated with the process stage.

3. The method of claim 1, wherein the trigger event occurs
periodically.

4. The method of claim 1, wherein the trigger event is
based on an external stimulus.

5. The method of claim 1, wherein the trigger event is
based on occurrence of selected data values within or
derived from incoming data records in at least one flow of
data being processed.

6. The method of claim 1, further including coupling two
graphs through a first-in, first-out graph queue.

10

15

20

25

30

35

40

45

50

55

60

65

16

7. The method of claim 1, further including creating a
checkpoint for the graph in response to a checkpoint trigger
event.

8. The method of claim 7, further including, for at least
one publisher process stage, keeping track of which data has
been published by such publisher process stage in response
to receipt by such publisher process stage of at least one
compute point indicator, so that data is not republished by
such publisher process stage if processing restarts from a
checkpoint.

9. The method of claim 1, further including automatically
synchronizing blocks of data within two or more flows of
data input to one of the process stages without the need for
communication between process stages or with a controller.

10. A computer program, stored on a computer-readable
medium, for initiating processing of blocks of data within at
least one flow of data input to a graph having a plurality of
process stages, including at least one subscriber process
stage, at least one publisher process stage, and optionally at
least one intermediate process stage, the computer program
comprising instructions for causing a computer to:

generate a compute point indicator in response to a trigger
event;

propagate the compute point indicator through the graph,
from each subscriber process stage through any inter-
mediate process stages to each publisher process stage,
as part of the flow of data;

for each process stage, process a current block of data
associated with the process stage in response to receipt
by the process stage of at least one compute point
indicator from an immediately previous process stage
associated with the process stage.

11. The computer program of claim 10, wherein for each
process stage, the instructions for causing the computer to
process a current block of data associated with the process
stage includes instructions for causing the computer to
perform such process in response to receipt by the process
stage of a compute point indicator from each immediately
previous process stage associated with the process stage.

12. The computer program of claim 10, wherein the
trigger event occurs periodically.

13. The computer program of claim 10, wherein the
trigger event is based on an external stimulus.

14. The computer program of claim 10, wherein the
trigger event is based on occurrence of selected data values
within or derived from incoming data records in at least one
flow of data being processed.

15. The computer program of claim 10, further including
instructions for causing the computer to coupled two graphs
through a first-in, first-out graph queue.

16. The computer program of claim 10, further including
instructions for causing the computer to create a checkpoint
for the graph in response to a checkpoint trigger event.

17. The computer program of claim 16, further including,
for at least one publisher process stage, instructions for
causing the computer to keep track of which data has been
published by such publisher process stage in response to
receipt by such publisher process stage of at least one
compute point indicator, so that data is not republished by
such publisher process stage if processing restarts from a
checkpoint.

18. The computer program of claim 10, further including
instructions for causing the computer to automatically syn-
chronize blocks of data within two or more flows of data
input to one of the process stages without the need for
communication between process stages or with a controller.

US 6,654,907 B2

17

19. A system for initiating processing of blocks of data
within at least one flow of data input to a graph having a
plurality of process stages, including at least one subscriber
process stage, at least one publisher process stage, and
optionally at least one intermediate process stage, the system
including:

means for generating a compute point indicator in

response to a trigger event;

means for propagating the compute point indicator
through the graph, from each subscriber process stage
through any intermediate process stages to each pub-
lisher process stage, as part of the flow of data;

for each process stage, means for processing a current
block of data associated with the process stage in
response to receipt by the process stage of at least one
compute point indicator from an immediately previous
process stage associated with the process stage.

20. The system of claim 19, wherein for each process
stage, the means for processing a current block of data
associated with the process stage includes means for per-
forming such processing in response to receipt by the
process stage of a compute point indicator from each imme-
diately previous process stage associated with the process
stage.

10

15

20

18

21. The system of claim 19, wherein the trigger event
occurs periodically.

22. The system of claim 19, wherein the trigger event is
based on an external stimulus.

23. The system of claim 19, wherein the trigger event is
based on occurrence of selected data values within or
derived from incoming data records in at least one flow of
data being processed.

24. The system of claim 19, further including means for
coupling two graphs through a first-in, first-out graph queue.

25. The system of claim 19, further including means for
creating a checkpoint for the graph in response to a check-
point trigger event.

26. The system of claim 25, further including, for at least
one publisher process stage, means for keeping track of
which data has been published by such publisher process
stage in response to receipt by such publisher process stage
of at least one compute point indicator, so that data is not
republished by such publisher process stage if processing
restarts from a checkpoint.

27. The system of claim 19, further including means for
automatically synchronizing blocks of data within two or
more flows of data input to one of the process stages without
the need for communication between process stages or with
a controller.

