US007047232B1

United States Patent

(12) (10) Patent No.: US 7,047,232 B1
Serrano 45) Date of Patent: May 16, 2006
(54) PARALLELIZING APPLICATIONS OF 5,819,021 A * 10/1998 Stanfill et al. ................ 714/15
SCRIPT-DRIVEN TOOLS 5,860,009 A 1/1999 Uchihira et al. .. .. 7117/149
5,870,743 A * 2/1999 Cohenetal ... 707/8
(75) TInventor: Martin Serrano, Lexington, MA (US) 5,909,681 A 6/1999 Passera et al. .....ccuueeeee. 707/8
(73) Assignee: Ab Initio Software Corporation, (Continued)
Lexington, MA (US) FOREIGN PATENT DOCUMENTS
(*) Notice:  Subject to any disclaimer, the term of this €A 2259362 /1998
patent is extended or adjusted under 35 (Continued)
US.C. 154(b) by 0 days.
OTHER PUBLICATIONS
(21) Appl. No.: 09/229,849 . . .
A User Level Program Transformation Tool, Francois Bodin
(22) Filed: Jan. 13, 1999 et al., ACM 1998, 180-187.*
(51) Int. CL (Continued)
GOGF 17/30 (2006.01) Primary Examiner—Shahid Alam
(52) US.CL ..o, 707/3;707/6, 7109/217;  Agsistant Examiner—Jean Bolte Fleurantin
7177115 (74) Attorney, Agent, or Firm—Fish & Richardson P.C.
(58) Field of Classification Search ................ 707/3-5,
707/100-104.1, 1-10, 200-206; 717/144-157, (57 ABSTRACT
717/100, 125, 160, 115, 168, 119; 715/514,
L 715/900; 709/100, 217} 218,219 A system and method for parallelizing applications of script-
See application file for complete search history. driven software tools. Scripts in the software tool scripting
(56) References Cited language are automatically analyzed in order to produce a

U.S. PATENT DOCUMENTS

5,088,034 A *  2/1992 Tharaetal ........... 717/160
5,151,991 A *  9/1992 Iwasawa et al. ............ 717/150
5,313,584 A 5/1994 Tickner et al. ................ 710/37
5,347,639 A 9/1994 Rechtschaffen et al. .... 712/203
5,367,619 A 11/1994 Dipaolo et al. ............. 707/506
5446915 A 8/1995 Pierce ......cocovvcevennnenee 712/11
SA75,842 A 12/1995 Gilbert et al. .............. 717/160
SA75,843 A * 12/1995 Halviatti et al. ............ 717/124
5,574,898 A * 11/1996 Leblang et al. ................ 707/1
5,600,833 A *  2/1997 Senn et al. ....cccooriinnnne 707/1
5,632,022 A 5/1997 Warren et al. .............. 345/350
5,682,537 A 10/1997 Davies et al. ............... 710/200
5,706,509 A 1/1998 Man-Hak Tso ............. 707/201
5,712,971 A *  1/1998 Stanfill et al. ................ 714/34
5,734,886 A 3/1998 Grosse et al. ....... ... 707/4
5,768,564 A * 6/1998 Andrews et al. ............... 717/5
5,799,149 A * 8/1998 Brenner et al. ............. 709/201

specification for a parallel computation plus a set of “script
fragments”, the combination of which is functionally
equivalent to the original script. The computational speci-
fication plus the script fragments are then executed by a
parallel runtime system, which causes multiple instances of
the original software tool and/or supplemental programs to
be run as parallel processes. The resulting processes will
read input data and produce output data, performing the
same computation as was specified by the original script.
The combination of the analyzer, runtime system, original
software tool, and supplemental programs will, for a given
script and input data, produce the same output data as the
original software tool alone, but has the capability of using
multiple processors in parallel for substantial improvements
in overall “throughput”. The invention includes computer
program embodiments of an automatic script analyzer.

36 Claims, 28 Drawing Sheets

wpuy 8
DATA

SCRIFT
FRAGMENTS

[

SYSTEM
CAIGINAL & 7| SUPPLEMENTAL
100L PROGRAMS
J




US 7,047,232 B1
Page 2

U.S. PATENT DOCUMENTS

5,935216 A 8/1999 Benner et al. .............. 709/248
5,956,704 A * 9/1999 Gautam et al. ................ 707/1
5,983,228 A 11/1999 Kobayashi et al. ........... 707/10
5,999,729 A 12/1999 Tabloski, Jr. et al. ....... 717/105
6,031,993 A * 2/2000 Andrews et al. ....c..vcenee. 7177
6,077313 A *  6/2000 Ruf ...c.oeovvenvrinieirnnns 717/155
6,182,061 Bl 1/2001 Matsuzawa et al. ........... 707/2
6,205,465 BL* 3/2001 Schoening et al. ......... 709/102
6,253,371 B1* 6/2001 Iwasawa et al. ............ 717/150
6,200,804 B1*  7/2001 Isman .....ccccoeeceeevennens 717/125
6,295,518 B1* 9/2001 McLain et al. ............... 703/13
6,311,265 Bl 10/2001 Beckerle et al. ............ 712/203
6,330,008 Bl 12/2001 Razdow et al. ............. 715/772
6,415,286 B1 7/2002 Passera et al. ................. 707/6
FOREIGN PATENT DOCUMENTS

EP 0421408 4/1991

JP 3-126169 5/1991

JP 8-16429 1/1996

JP 10-232875 9/1998

JP 10-340276 12/1998

JP 11-514116 11/1999

JP 2000148699 5/2000

WO WO 97/23826 7/1997

OTHER PUBLICATIONS

Torrent Technical White Paper, “ORCHESTRATOR for the
SAS System—Delivering Scalability and Performance to
SAS Applications”, pp. 1-30.

Afrati et al., “Performance Considerations on a Random
Graph Model for Parellel Processing”, Informatique

Theorique et Applications, vol. 27, No. 4, pp: 367-388,
(1993).

Apers et al., “PRISMA/DB: A Parallel, Main Memory
Relational DBMS”, IEEE, pp: 541-554 (1992).

Boral et al., “Prototyping Bubba: A Highly Parallel Database
System”, IEEE, vol. 2, No. 1 pp: 4-24, (Mar. 1990).
Braun, Peter, “Parallel Program Debugging Using Scalable
Visualization”,IEEE, pp: 699-708 (1995).

DeWitt et al,, “The Gamma Database Machine Project”,
IEEE, vol. 2, No. 1, pp: 44-62, (Mar. 1990).

Graefe et al., “Encapsulation of Parellelism and Architecture
Independence in Extensible Database Query Execution”,
IEEE, vol. 19, No. 8, pp: 749-764 (Aug. 1993).

Graefe, Goetze “Volcano—An Extensible and Parellel
Query Evaluation System”, IEEE, vol. 6. No. 1, pp: 120-135
(Feb. 1994).

Li et al., “Load Balancing Problems for Multiclass Jobs in
Distributed/Parellel Computer Systems”, IEEE, vol. 47, No.
3, pp: 322-332, (Mar. 1998).

Rim et al., “An Efficient Dynamic Load Balancing Using the
Dimension Exchange Method for Balancing Quantized
Loads on Hypercube Multiprocessors”, IEEE, pp: 708-712
(1999).

Stanfill, Craig, “Massively Parallel Information Retrieval
for Wide Area Information Servers”, IEEE, pp: 679-682
(1991).

Stanfill, Craig, “The Marriage of Parallel Computing and
Information Retrieval”, IEEE, (2003).

* cited by examiner



U.S. Patent May 16,2006  Sheet 1 of 28 US 7,047,232 Bl

1
[ SCAIPT Jf W |-

! 10
ANALYZE )
SCRIPT
v A 4
PABALLEL 3 SCRIPT 4
COMPUTATION FRAGMENTS
) 5
antive |
SYSTEM
=y IR
ORIGINAL 6 SUPPLEMENTAL
wo. . ¢ "~ ° PrOGRAMS

A 4

outPuT |9
DATA

FIG. 1




U.S. Patent

/‘2

ANALYZE SCRIPT

FIG. 2

\

May 16, 2006

Sheet 2 of 28

(INITIAL SCRIPT |1

N

J

\ 4

DIVIDE INTO
STATEMENTS

101

A 4

(" SEQUENCE OF ) 102
| STATEMENTS |

\ 4

CONSTRUCT
SERIAL
DATAFLOW
GRAPH

\\

( SERIAL
. DATAFLOW
GRAPH  J

104

y

PARALLELIZE

105

A4 .
PARALLEL )
LDATAFLOW 106
GRAPH |

GENERATE
SCRIPT
FRAGMENTS

Y
PRODUCE
PARALLEL
SPECIFICATIONS

108

[ SPECIF

US 7,047,232 B1

y 3
ICATION-
OF PARALLEL ERA
COMPUTATION

A4
SCRIPT 4
GMENTS




U.S. Patent May 16,2006  Sheet 3 of 28 US 7,047,232 Bl

201 LINDATAQ }/202
220 kzm

STEP 1:

CONCATENATE b 2%

INDATA 1

204

STEP 2: 205
AGGREGATE
1/224




U.S. Patent

201

May 16, 2006

202

Sheet 4 of 28

US 7,047,232 B1

[ INDATA 1 ] L/NDATA? )

227 o1

225 11

X

STEP 1A:
PARTITION

STEP 1B:
FARTITION

228512

\

20 o1

TN

( TEMP 3

[ e )
J

\gzzo

SIEP1:
CONCATENATE

222
l/ )
TEMP 1

l/-23 1

STEP 2A:
HASH
PARTITION

BY V2, v3 }—232
r \

TEMP 5
; 4

BYVZ, v3

/221
203

e

FiG. 4

| =

. BY V2, v3
STEP 2; 205
AGGREATE

BY V2, v3

224

r

\,

—~\BY V2, V3
TEMP 2 )/206

BY V2. v3 k233

STEP 3A:
GATHER

A

-

\ N

~

TEMP 6

i,

| —225
y

\

STEP 3:
ANALYZE

L —226

[

4
\
OUTDATA
J




U.S. Patent May 16,2006  Sheet 5 of 28 US 7,047,232 Bl

INPUT INDATAT INPUTT .DAT 1
INPUT INDATA2 INPUT2 .DAT

CONCATENTATE INDATAT INDATA2

AGGREGATE 01 =MIN v1, 02 =MAX v1, 03 = SUM v1 BY v2, v3
ANALYZE

OUTPUT OUTDATA OUTPUT DAT. |

SCRIPT |1 102
201

——— INDATA 1: INPUT INDATAT INPUTT .DAT j/

' 202
————_INDATA 2: INPUT INDATA2 INPUT2. DAT ]/

| (STEP 1 CONCATENATE INDATAT INDATAZ }~ %%
| (STEP 2 AGGREGAIE..BY V2, v3 J/205

207
| (STEP 3 ANALVEE |
L (GumDATA: 0UTPUT OUTDATA OUTPUT DAT ) %8

FIG. §



U.S. Patent May 16,2006  Sheet 6 of 28 US 7,047,232 Bl

s01—] NAME CLASS  FILE EXPLICIT?
Q01~NWDATAT  INPUT  INPUT1.DAT YES
oOe INNDATA2  INPUT  INPUTZ.DAT YES
208~N~OUTDATA  QUTPUT  OUTPLTDAT YES
00V TEMPT TEMP NO
\TEMP2  TEMP NO
DATA SET TABLE 601

op3—| NAME — OPERATION _ PARAMETERS (EXCEPTING DATA SETS)
DSNSSTEPT  CONCATENATE
STEP2  AGGREGATE 07 =IIN v1,02=MAX v1,03=AVGV1

BY v2.V3
OT~GTEP3  ANALYZE

PROCESSING STEP TABLE | 602

200~1 STEP DATASET  DIRECTION  ROLE
5o1STEPT  INDATAT ~ INPUT IN
$5o_I°STEP1  INDATA2  INPUT N
Sp3~[SIEPT  TEMPT OUTPUT ouT
5o~ SIEP2  TEMPT INPUT IN
o5 [STEP2  TEMP2 OUTPUT ouT
oA SIEPS  TEMP2 INPUT N

“NSTEP3  OUTDATA  OUTPUT ouT

DATA SET ACCESS TABLE 603

FIG. 6



U.S. Patent May 16,2006  Sheet 7 of 28 US 7,047,232 Bl

(START)

A 4

INITIALIZE DATA SET TABLE gﬂ)
INITIALIZE PROCESSING STEP TABLE(602)
INITIALIZE DATA ACCESS TABLE(603)

|~ 500

FIND ALL DATA SETS & GLOBAL ~ |-507
VARIABLES AND CREATE ENTRIES IN
DATA SET TABLE(6071)

=

y

502
ANY UNANALYZED
PROCESSING NO_, DonE) 512
STE?'PS ;

YES

SELECT NEXT UNANALYZED
PROCESSING STEP 903

4

CREATE ENTRY IN PROCESS 504

STEP TABLE (602)
] /508
| 505 CREATE ENTRY IN
FOR EACH EXPLICIT /0 REFERENCE, DATA Ac(ggss)s TABLE
CREATE ENTRY IN DATA ACCESS TABLE
(603 t s
3 DETERMINE IMPLICIT DATA
506 SET BASED ON CONTEXT
IMPLICIT REFERENCE YES
70 EXISTING DATA SET
? L
'y CREATE ENTRY IN
DATA ACCESS TABLE
(603)
IMPLICIT REFERENCE 1 -sn0
TO NEW DATA SET
? CREATE INTERMEDIATE
DATA SET ENTRY IN
FIG. 7 DATA SET TABLE (601)




US 7,047,232 B1

Sheet 8 of 28

May 16, 2006

U.S. Patent

006

8 ‘b4

| SS390Hd QY07 P 718V1 ISYEYIYT GINOILLHYS
TYNYILXI NV ONIGAY A8 32113 TTVHYd ONISSIOIY 13S VIVa 80 1n0  [>-806
SS3I0Hd aYOTINN P F18v1 ISYavIYa AINOILLHY
TYNYILXI NV ONIGQY A8 3213 1TV4Yd ONISSFOY 13SYIVA 80 M N z08
SFOVIS TI07 ONV
WE079 OINI ONILLITIS A8 FZI1TTTVHV NOILY&3dO ILVOIHINY o
714
F714 GINOILUYY
QINOILUEYS ONISSTIIV 13S
) ISNYTI AL
DNINOLLLMYS QISYE-AIN AG FZITTTIVEV SNIVINGD d3LS DNSE et po
dIIS
ONINOLLIIYYS TTdWIS AG TZNITTVEVY ONISSIO0Hd AdOD HO LYo eos

\4(

c06

106

—~ T~



U.S. Patent May 16, 2006

(START )

Y

Sheet 9 of 28 US 7,047,232 B1

INITIALIZE PARALLEL PROCESSIN
STEP TABLE(802)
INTIALIZE PARALLEL DATA
ACCESS TABLE(303)

INTTIALIZE PARALLEL DATA SET TABLE &80 )

700 DONE

Y

ANY UNPROCESSED
S T?EP

701

YES

y

RESOLVE PARTITIONING
CONFLICTS

707

SELECT AN UNPROCESSED
STEP FROM THE PROCESSING
STEP TABLE(802)

|~ 702

A 4

CONSULT PARALLELIZATION
REPERTOIRE (900)
T0 LOCATE BEST APPLICABLE
PARALLELIZATION TECHNIQUE

_~703

704

ANY TECHNIQUE
LOC;JTED

NO

y

| APPLY REWRITE RULE
(902)

\-705

MARK VERTEX AS "SERIAL"

A




US 7,047,232 B1

Sheet 10 of 28

May 16, 2006

U.S. Patent

£08 (WILINY F18YL SSTIIY 13S YIva TTTTVEY
1no 1ndino viYaino £d3IS~_ g7z
NI -~ INdNI 23l £d31S 258
1n0. 1NdINo ediil L EIN Ny
NI I Ldial A TN g 42
1no NdIN0 LWl Ld1SJ-ce
NI 1Ndnl quivant  1d3ISJ-eee
N  ANdNI LYLYONI Id31sytee
ONINOILILYYL 3104 NOILIFHID 138 VIVO dils [~0ce
c08 (VILIND T78YL d1S ONISSTIOHd TITIVHY
JZAWNY  EdAS_ 0o
EA'TA AF
IADNY=EO'LAXYW=COIANIN=10  3y93499Y  2daUS-|_
AYNILVONOD  LdIIS{F0E
ONINOILILYYS (S13S VIVQ ONILdIINT) SHILINVEYd ~— NOIVHIJO  FWUN
108 (TwiLINY 378VL 43S VIVA 13 TIVYYd
ON dWil 2dAI oo
ON di3l R ETR Ny
WIH3S SIA yqindino  indino - vivaino-{k0e
WI43S ST V@ zindni IndNl evIvanI-l
TIH3S SIA Wahndn - dndnl - 1YIYaNS[Z§9¢
ONINOLLILHY ¢41INdX3 U4 SSY1D JWYN

0L 914



US 7,047,232 B1

Sheet 11 of 28

May 16, 2006

U.S. Patent

£08 378vL SS3IIV 13S VIVA 13TTVYYd

WIHS 1N0 1Ndino VIYaIno dAUSN_g7m

UES NI 1NdnI cdwil £dIS~
£4'2A AG N0 11dIN0 edl Zdifs- [ —5¢ec
EA ‘2N A8 NI 1Nani 1dW3L b ETRN g
ENETS 1no 1Ndino LdW3L IETEN 44
F1dNIS NI ndn 2vIVaNI LdIISJ-¢ce
J7d0IS NI 1NdNI LYLYQNI TR 4
ONINOILILYY 3704 NOI123Y10 13s viva dils [~0c¢

208 378YL d3LS ONISSIO0Hd 1TTIVHYd
WIH3S WY €IS, g2
.. EAZA AG
£A ‘2A A9 AINY=EO'IAXYW=CO'IANIN=10  IyD3y99Y  Zd7IS-
3 1dNIS AUYNIIVONOD  Ld1S]-20¢
ONINOLLLLYYd (S138 VIV ONILdIIX3) SHILIWYHYY ~— NOLIYYIJO  JwyN |02
06 318V1 13S VIVa 1ITTV4Yd
oN dW3lL Wi~

o . R [dWFI~] 908
WIH3S SIA waindino  1ndino  vayaino-Jt0¢
WIHIS SIA NIARATEL Indnl - evivani~J-80¢
WIH3S _S3A VA LINdN! Indnl  LyIvaniSe0¢g
DNINOILILHYd é1andx3 JU4 $SY1) Jwyn |10¢

Ll "9



U.S. Patent

May 16,2006  Sheet 12 of 28 US 7,047,232 Bl

ANY UNPROCESSED
ST!;;PS

YES

SELECT AN UNPROCESSED
STEP SUCH THAT ALL
UPSTREAM STEPS HAVE
BEEN PROCESSED

|

|~ 1602

MARK ACCESS
AS PROCESSED

ANY UNPROCESSED
ACCE?SSES

YES

1603

1601

ye 1604

NO

IMARK STEP AS
PROCESSED |~

Y 1605

SELECT AN UNPROCESSED
DATA SET ACCESS FOR THE
SELECTED STEP

PARTITIONING
MATCH

4\

ACCI;SS‘S

1608

IS DATA SETS
PARTITIONING
BLA?NK

YES

_~1609

1610

NO
YES

INSERT ADAPTER
THEN TEMPORARY
DATA SET

1611

Y

INSERT TEMPORARY
DATA SET THEN
ADAPTER

PROPAGATE ACCESS'S
PARTITIONING TO DATA

SET AND ADJUST
ACCESS TABLE

1612

FiG. 12



US 7,047,232 B1

Sheet 13 of 28

May 16, 2006

U.S. Patent

708 F19¥1 SS300Y 13S YiIYa 13174
LICEN 1no 1NdINo VIYALNO IS _ g7z
TIH3S NI 1NdN| 2diil £d3IS T 0%
WAV o 10dINQ cdivil ZETEN g
€1 e Ad NI 1NdNI LdIL ediIsJ-#ee
I1dNIS N0 11din0 ETIET EETN (mmm
F1dWIS NI 1ndnl CUEN E N N3
31d0IS NI 1NdN| ediil PEICN N
F1dAIS 1no 1ndino pd3L  gLd9lS[-0cC
171435 NI 1NdN! SVIYaNl  8idILSJ-0E¢
J1dNIS 1no 1ndino EdNAl  VIdIIS["8¢C
WIH3S Ni 1NN WIVGNT  Yid31S-J8¢¢
BNINOILILYYd 7104 NOILD3HI0  13SVIVD dils |—4ce
205 ES 181 J31S ONISSIO0Hd ATWEYd 0 o) N
£A'2A A . , EAcAAE WIIHIIY IS~ oo
WIS~ AIAV=EO0'LA XYW=CO LA NIN=10 IYNIYONOD  1dIS "2,
WIHIS NOILIIHYd-3TdWIS  82d31S~J60¢
RS NOUIHYS-TIdWIS  VidIIS~| Rm
ONINOILILEYD  (S13S VIV DNILdTIXT) SHILIWYHYI NOILYY3d0  FWYN ¢
108 7718v1 13S YIva TITIVHYd
F1dWIS ON dil pdWI g2
F1dNIS oN dL (S TTETa N
ON dWIL 2T ETS N
J1dWIS ON dV3L 1AL T0¢
43S SIA WaINdinG  INdIN0  VIYAINON T gnt
VIH3S SIA Waeindht  — 1ndr eYIYaNISL 3G
T143S SIA WaLndne - dndNl BYYANIN TG 0%
ONINOILILYY ¢11917dX3 34 Ssv¥1d JWYN

&L °9i4



US 7,047,232 B1

Sheet 14 of 28

May 16, 2006

U.S. Patent

B8 318v1 SS3JIV 13S VIVa 13 1Tvevd

110 INdING VIYGINO £dIIS~_
o DS NI 1NdNI 2di3l £d31sJ9¢¢
£ ZAAd 1n0 1ndino ediiil 2 ETN g 44
€N NI 1NdNI Sdial A E TN g 474
EN'TA NG 1no Ndine  Sdwal VediiS-J €
F1dWIS NI LN 1dnal  Yed3is-Jcee
F1d0iS 10 1Ndino Ld3L 1d31S-LeC
FIdNIS NI Ndni bdii3! [PETSN 144
JIdWIS NI 1NdNI ] Id31s~-1ec
JIdNIS 1n0 1Nding: TR : TP E TN 4
WIHIS Nl 1NdNI SVIVaNI  81dIIS~0E¢
T N U ViR es
ONINOLLILHYd 3104 NOILDFHIO 13 VIVD dIIS~/2¢

208 W3S 778Y1 d1IS DNISSII0H 13 1T7Hvd
_ JZAWNY  €471S-]
1§ LASAY=E0 ‘LA XY=20 ‘LA NI = 10 ol 2%
£A 2 AS = =¢0 IANIN=10 I¥93HDOY 243l

VTS ENNAT  NOWISRLISH  vedaia | 50g
FIdNIS AYNAYINOD LdIISZES

WIH3S NOUIIEVA-TIdWNIS ~ @1dIIS~
ES NOIUEYS-TIdNS  VidIIs~—kie
ONINOILILHY] (S13S VIVQ 9NILdIIXT) SHILIWVHYS NOLiV§3d0  FWvN |0iC

108 . 378v1 135 VIVa 131TV4Yd

muﬂw\_ Ad ON diii RTEING
WIS ON di3l P51
F1dNIS ON diil e —€4e
EACAAG ON diWil 2dnalele
31dWIS ON o dwil 1dW3I~J-90¢
NS SA Waindino  ndino  vyaino~y-roe
G dedm Che ol

NdNl - LYIVGNIS

DNINOLLILYY ¢HIIdX3 14 $SY1D Iwyn |H0¢

bl "9



US 7,047,232 B1

Sheet 15 of 28

May 16, 2006

U.S. Patent

—_ 3181 SS30V 138 VIVA 13TTYYYd
£oe W3S 1no INdino viYaino gdis-|
WIE3S NI 1NdNl 9diN3l £d3I5-I-9¢¢
WIHIS 110 1ndino 9di3i VEdIIS~J-7¢¢
£AZAAG NI ANdN| cdivl YEdIS-FE
EACAAG 1no 1n41ng cdiiil ¢S~ EEC
EA'CAAG NI 1NdN| SdiA3l cdIIS~L PSS
ENGAAG 1no 1ndino Sdial VedIIS 555
JTdWIS M ANdNI LdwWil Ved3IS~ 955
F1d0IS 1no 1NdinNo LdW3l IEET g
F1dMIS NI 1Ndn vyl 1dIIS
J1dWIS I 1Ndni Ed3l [EETIN g 144
F1dIS 110 1Nd1No rdial g1d315-I~0¢c
1IH3S NI ANdNI 2vivani §1d3IS- -0
TS N0 1ndINo e vId3IS-]-6¢2
WIHS Nl ANdNI LVLYGN Vid3ilS [~—8cc
ONINOILILHYd J104 NOIL33HIa 135 viva d1S [~/22
208 IS F18Y1 d31S INISSTI0H TITIVHYL
FZATYNY £d1S
W3S ‘ \ YIHIYD  YEdAIS [-202
€A '2A A8 LA DAY=E0 “[A XyYW=20 ‘|A @%\_ \hﬂm 3Y93499Y 2dils e
= = = ~
FIdIS EACAAG NOUILHYS-HSYH — YedIS-J 502
J1dWIS JUYNIIVINOD PPETLSN gl 414
s i e N
ONINOILILHYd (138 VIYQ ONILdIIX3) SHILIWYHYL NOLYY3d0 JNYN 012
7781 13S VIva 13TTVEVd
—_ TVIH3S ON dW3L 9dWTI]
Iog €1 2hAg ON diViL 2T ETN gl 414
J1dWIS ON dn3l CCLETN N 114
I7dIS o dWil TETN gt
EA ‘A AG ON it cdil-cte
J1dNIS ON _ diV3l LdiN3L 902
W3S SA yaindino 1nd1no vivaino-J-+0¢e
WIH3S SHU wazindwi 1NdNI cyLyaNI | ~80¢
I/ES SR va'1indn LNdN Hrayan [ ~co02
ONINOLLLLYYd ¢2191dx3 3 SSY13 JWYN 102

G194



U.S. Patent

May 16, 2006

Sheet 16 of 28

NY
UNPROCESSED
STE;PS .

YES

SELECT AN
UNPROCESSED
STEP

| —2002

DOES STEP
NEED A
SCI;IPT

YES

US 7,047,232 B1

MARK SETAS
PROCESSED

A 4

—2009

-

GENERATE
INPUT
DECLARATIONS

2004

A 4

GENERATE
PROCESSING
STEP

2005

\ 4

GENERATE
OUTPUT
DECLARATIONS

—2006

WRITE SCRIPT
TOFILE

2007

y

MODIFY PROCESSING
STEP TO REFERTO
APPLICATION +
SCRIPT

|_~2008

FIG. 16



U.S. Patent May 16,2006  Sheet 17 of 28 US 7,047,232 Bl

----------------------------------------------------------------------------------------

SCRIPT 1:

INPUT INDATA1 §1 | 2101

INPUT INDATA2 §2

CONCATENATE indatal indata2

OQUTPUT outdata $3

SCRIPT 2: 2102 ;

INPUT indata 1 81 |

AGGREGATE 07=$m/n v1, 02=max v2, 03=avg v1 BY v2v3| :

OUTPUT outdata $2 | :

SCRIPT 3: 2103 :

INPUT indata $1 E

ANALYZE :

OUTPUT outdata $2 :
4:

.........................................................................................



US 7,047,232 B1

Sheet 18 of 28

May 16, 2006

U.S. Patent

— 318Y1 S$300V 135 ViIVa TITTVHYd
toe WIHIS 00 10dIN0 VLYo o -
W3S NI e 9dn3l EdIISN 25
IEES 1no 1ndINo 9di VEdIS~{ T35S
EACAAG NI 1NdM 2dial T A
EN'gNAg no 1ndino 2Nl ¢dIIST55S
ENCAAE NI 1NdI SdNaL ¢dIIS ¢SS
YAV 1n0 1ndINo Sdil VedIlS 555
F1dNIS NI 1NdNf 13l VedIIS oS
F1dNIS 1no Indino IdiV3l I N
F1dNIS NI 1ndn pdWl bdIISTT9SE
ELETIIN N 1nd edi3l PN N 4

F1diS 10 Ndino pdiNIl [PETN iy

WIH3S NI 1ndn ZvIvan RETIN gy 34
TS 1no Ndino EdAl Vid31S-]-6¢¢
WIH3S NI ANdNI LVIVGNI Vid3lIS. 82
ONINOILILHYd 3104 NOLLITHIO 138 viva dIIs |~Le2

208 F18VL d31S DNISSTI0HL 13 TIVHVd

V43S £1dI43S FZAWYNY NNY £dIS~
WH3S HIHIY9  VEdIIS~|-40¢
€A 2A A9 21dI49S FZAWNY NNH  2d3US~{94e
FIdWIS EACAAG NOILIIMVA-HSYH  Yed3IS- ] —90¢
J1dNIS {1d149S JZATYNY NNH IdIS [tic
WIHIS NOILILYYd-3IdNIS  81d3LS- €02
WIHIS NOLLIIMYS-TTdINIS  VIdIIS LI
ININOILILHYd (S138 V1Y@ 9NILdIIXI) SHILINYHYL NOIYH3dO JWYN 012
318v1 13 VIVQ TITIVHVd
— ZCES ON dWil 2 [JEIN

108 £A'ZA AT ON dWa EEIWN ie
e ON dii TR Nt
37dNIS ON divil ganir—€ie
EA'TA A8 ON dW3l edwar —cile
F1dWIS ON ‘ diN3L R ETN A
7GES SIA 1vaindino 1Ndino vivaino. J~—roc
WiH3S SA waeindni 1NdNI SVAVaNI~-802
i3S SIA G LINdNI 10dNI IVLYaNI 202
DNINOILILHY] ¢11911dx3 4 SSY1) FWYN |~102




U.S. Patent

May 16, 2006

Sheet 19 of 28

US 7,047,232 B1

GENERATE SPECIFICATION
FOR TEMPORARY
DATASETS

2301

ANY
UNPROCESSED
STE?PS

YES

SELECT AN UNPROCESSED
STEP SUGH THAT ALL
UPSTREAM STEPS HAVE
BEEN PROCESSED

2303

'  J
GENERATE COMMAND
10 RUN PROCESSING

STEP

|

2304

MARK SET UP
AS PROCESSED

FlG. 19

|/2305



US 7,047,232 B1

Sheet 20 of 28

May 16, 2006

U.S. Patent

— 378Y1 SS3I9V 135 Viva 1ITIVYYS
€08 WIS 1o 0dino - vivaino I
H3S Nl 1NdN! 9dW31 £d31S =3¢
LS o 1ndino 9di3l vedIiS~|—5¢¢
£ACAAG NI 1NdNf 2di3l YEJIS] /wmm
EA'ZA AD ino 1ndino cdi3L ¢diIS -8k
EA'ZA AG M ~IndNI SdiVil 2ETN Ny
EA'2AAG no Ndino SdiW3l vediS-J—€ce
F1dNIS M L0dN| Ldi3i Ved(S-J—cte
F1dWIS 10 1NdinG 1di3l 1d3ISI-LEC
T1dNIS NI Indmi ydial IPETEN 424
F1dNIS N 1NdNI £divil bd3iSJ-tce
ENES 1no nding pdiy3l O ETEN g4
TES NI LNdNI 2vIVONI 81 d3iS-I-06¢
F1dNIIS 1no ndino £diVil ZEETER g 144
. WIHIS NI INdNI LVIYaNT AP ETISN 44
ONINOILILEY] 04 TRED 138 viva dils |~<ce
208 318V1 J31S DNISSIT0H 13 TIVHYd
IS
ES E1dIHIS FAWNYNNY  EdAUSN_ 00
) HIHWYD  VEJIIS g5
£4 ‘2 Ag 2idIH9S JIZANY NN edIISL 208
J1dWIS £A'cA A8 NOUILEYd-HSYH  VedIIS~]
F1dIS 11dIH3S JZATYNY NOH  [dTUS-[FiS
F7EES NOULHYS-TIdNIS  §1dTIS<I-E08
TYIH3S NOILLIEVY-31dWIS  VidIIS-J-HiE
ONINOLLIL YV (8138 VIVQ ONILdTX3) SUILIWVHY NOLIYYIdO Juyn |01
~1gvL I35 VIVA 13T1YEvd
_— LES ON . 93l ETEN 9N/, 2
108 £4'2A AG ON 2'SdW3lL!s SdWIL ETIET I E T N
J1INIS ON S PdiV3L't b3l diW3l bVl 215
F1dNIS ON g EdWIL'l €d3L dW3l RETS N
£4'gA A8 oN ¢'edi3l:k 23l dwil 2T A
F1dNIS oN S IdNAL'L Td3L dW3l Bk N
WIH3S SIA WAINING  ININ0  YAYAINO~Tpos
WIHIS SIA 1vazindni 1ndm eAVANINL 505
WIHIS SIA 1YaLindan 1NdNI 17170 N
DNINOILILHYd 11911dx3 ERLE] §S¥12 _IWYN

0¢ 914



US 7,047,232 B1

Sheet 21 of 28

May 16, 2006

U.S. Patent

i12 “9id
g 1va 1ndIno 9dWIl  EldI¥IS IZATYNY NNY
. 9dNdl 22 dW3Lil 2dNA Y3HIYD)
Z2dWALL ZdNIL g6 dWILL SNl ZIdIdDS FZKIYNY NnH
. . ¢S dWILl STl &1 dWIL) 1dial SAIA  NOILILYVS-HSYH
2L IWILLL dWAL S h IVTLEL PdNIL € dNTL'L €IV 11dIHIS IZAWYNY NNY
2t dW3L:1 b 1Va°2LNdni NOLLILEVE-TIdIS
2°€ dW31'1 edWil 1va-Lindni NOILILYYd-T1dWIS




U.S. Patent May 16,2006  Sheet 22 of 28 US 7,047,232 Bl

oo © ¥
005~ 1001 2 4
002 3 6
1003 4 8

1004~ v
COPYx1=V1, X2=V2+V3

4

N
1000 3
1001 6
1002 9
1003 12
1001
1006~ v v2 V3 1006~ vi v2 v3
™ t000 1 2 001 2 4
1002 3 6 1003 4 8
1007~ 7 1007~ 7
COPYXT=V1 X2=V2+V3 COPYXT=V1 X2=V2+V3
1008~ v 1008 _¥
R N1 x
1000 3 1001, 6
1002 9 1003, 12
1002
1021\ / 1021\ /
1020~ oPERATION 1020~ oPERATION
7022'}/ \ 1022y \
BEFORE AFTER

FIG. 22



U.S. Patent May 16,2006  Sheet 23 of 28 US 7,047,232 Bl

1103 V1 v2 V3
™ 1000 1 2
1000 2 4
1001 3 6
1001 4 8
1002 5 10
1104~ v

AGGREGATE X1=MIN v2, x2=MAX v3BY v1

1105 v1 x1 x2
™ 1000 7 4
1000 3 8
1002 5 10 1101
Vi V2 V3 -
1106~ 1106~ 1001 3 6
1000 2 4 |
1002 5 10 1001 4 8
1107~ ) 1107~ 7
AGGREGATE X1=MIN v2 AGGREGATEXT=MIN V2,
X2=MAX V3 BY v1 | X2=MAX V3 BY V1
¥ !
NMé~Jvi_ x1 x2 M0~ vi_ x1 1
1000 1 4 1001 3 8
1002 5 10 -
- 1102
BY KEY
1121\ / 1121\ / BY KEY
BY KEY
1120~ oPERATION 1120~ operaTION
BY KEY BY KEY
1122>/ \ 1122}/ \
BY KEY BY KEY
BFFORE AFTER

FIG. 23



US 7,047,232 B1

U.S. Patent May 16, 2006 Sheet 24 of 28
1205 DISKFIE 1200
1201
IDISKIFILE
1202~ v
i 2 3
000 1 2
000 2 4
1001 3 6
1001 4 8
1000 5 10
1207
s N/DISK1/FILET/DISK/FILE2 1204

1206\ !
vi v
1000 1 2
1000 2 4
1002 35 10

1206\ !
vi v v
000 3 6
1001 4 8

/CONTROL1/FILET

S——

/DISK1/FILET
/DISK2/FILE2




U.S. Patent May 16,2006  Sheet 25 of 28 US 7,047,232 Bl

Vi v2
1301~} 2
3 6
4 8
5 10
1302~ ¥
AGGREGATE x1=MIN v1, x2=MAX v2
¥
1303~ x1 x2
1 10 1300
11/1 52 Vi v2
1305~ 2 4 1305~ § ?o
3 6
1306~ 3 1306~ v
AGGREGATE X1=MIN v1, AGGREGATE X1=MIN v1,
x2=MAX v2 X2=MAX v2
¥ . ']
0T~ 'x1" x2 B0 x1 xi
1 6 4 10

N\ 4

1308 AGGREGATE X1=MIN X1, x2=MAX X2
y
1309
™~ x1 x2 1304

1 10
7328\ /
1321 1323~ LOCAL
\\ / STAGE
1226

1320 L
™ OPERATION 1920~ [0CAL

RESULTS

./
73227/ \ 1327—73
1325~

GLOBAL

18207 N\

AFTER
FIG. 25




U.S. Patent May 16,2006  Sheet 26 of 28 US 7,047,232 Bl

ZIN 1400
1402~ " INTRINSIC
| UNLOAD
\ 4
Vi v2 V3
M0~ 1000 1 2
| 1000 2 4
1001 3 6
1001 4 8
1002 5 10
| 1404
140 1\ -
EXTERNAL EXTFRNAL
UNLOAD UNLOAD
| 1405 1405~
v V2 v3- v1 V2 v3
1000 1 2 1001 4 8.
;32(7) g g 1002 5 10
1406
1406~
1421\ / 1424\\\ /
7420\ 1423‘\
PARALLEL
OPERATION OPERATION
14227/ \ 1425}/ \
BEFORF AFTER

FIG. 26



U.S. Patent

A/

May 16, 2006

1702
™ 0PERATION

7\

BEFORE

1501\l

1505~ e
PROCEDUHE

1502="

BEFORE

Sheet 27 of 28

1 703\\ /

US 7,047,232 B1

1704~
DECOMPOSED
OPERATION

1707
TEMP

1705
\( RESULTS

-\

y,

1327\§V

1706~ CONCATENTATION

A

AFTER

FiG. 27

1501\l

1904~ pARTITIONED
DATASET

v

1505~ mEAN

PROCEDURE

v

LOCAL
DATASETS

1506\[

\

/

v

1507~EXTERNAL MERGE

APPLICATION

1502-"%

AFTER

FiG. 28



U.S. Patent May 16,2006  Sheet 28 of 28 US 7,047,232 Bl

1601

1604~ PARTITIONED .
DATASET |
y

1605 FREQ
N PROCEDURE

v

' T ol
7607\1 J
v

N 1607~J  FREQ
PROCEDURE PROCEDURE

1602-"% 1602

BEFORE AFTER
FIG. 29

1602

804" parrmionep )
DATASET |
¥

1805~  UNIVARIATE
PROCEDURE
INSTANCES

v
1301\i DATASETS

v
1805 1807
N YUVARUATE N concarenamon

7802'4 1802-A

BEFORE AFTER
FiG. 30




US 7,047,232 Bl

1

PARALLELIZING APPLICATIONS OF
SCRIPT-DRIVEN TOOLS

NOTICE OF COPYRIGHTS

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

TECHNICAL FIELD

The invention relates to the control of computations in
data processing systems and, more particularly, to parallel-
izing applications of script-driven tools.

BACKGROUND

Computational speeds of single processor computers have
advanced tremendously over the past three decades. How-
ever, many fields require computational capacity that
exceeds even the fastest single processor computer. An
example is in transactional processing, where multiple users
access computer resources concurrently, and where response
times must be low for the system to be commercially
acceptable. Another example is in database mining, where
hundreds of gigabytes of information must be processed,
and where processing data on a serial computer might take
days or weeks. Accordingly, a variety of “parallel process-
ing” systems have been developed to handle such problems.
For purposes of this discussion, parallel processing systems
include any configuration of computer systems using mul-
tiple central processing units (CPUs), either local (e.g.,
multiprocessor systems such as SMP computers), or locally
distributed (e.g., multiple processors coupled as clusters or
MPPs), or remotely, or remotely distributed (e.g., multiple
processors coupled via LAN or WAN networks), or any
combination thereof.

However, despite the existence of such parallel processing
systems, not all programs or software tools are designed to
take advantage of parallel processing. For example, several
commercially important software tools share the following
characteristics:

The software tool is capable of performing a variety of

functions.

The invocation of those functions is controlled by a
“scripting language” which specifies a series of pro-
cessing steps and the interchange of data between those
processing steps.

Users write applications using the combination of the tool
and its scripting language.

The software tool makes no or minimal use of parallel
processing.

One example of such a software tool is the “SAS®
Software System”, a data analysis system produced by the
SAS Institute, Inc. The functions provided by this tool
include data transformation, data aggregation, dataset man-
agement, and a wide variety of statistical procedures. Users
build SAS applications by writing scripts in a language
which is also called “SAS”. A second example of such a tool
is “SyncSort®” produced by Syncsort Inc. The functions
provided by this application include data filtering, data
sorting, and data aggregation. Users build “Syncsort” appli-
cations by writing “Syncsort” scripts.

15

40

45

2

When applications built with such software tools are used
to process large quantities of data, execution times can
become quite large. Parallel processing, in which large
numbers of processors can be applied to a single application,
has the potential to speed up such data-intensive applica-
tions. Ideally, a job which took 10 hours running on a single
processor might take as little as 10 minutes running on 60
processors. Such a performance improvement is, of course,
dependent on having software which is capable of utilizing
the parallel processing system.

Users of these software tools are not, in most cases,
willing to learn how to use a new and/or different tool or to
modify existing applications of the tool. For example, a user
of SAS generally would not be willing to learn an entirely
new scripting language or to modify existing SAS applica-
tions. In order to bring the benefits of parallelism to such
users, the inventor has determined that it would be desirable
to automatically parallelize applications of the tool, as
expressed in the scripting language.

SUMMARY

The invention includes a system and method for paral-
lelizing applications of certain script-driven software tools.
In the preferred embodiment, scripts in the software tool
scripting language are automatically analyzed in order to
produce a specification for a parallel computation plus a set
of “script fragments”, the combination of which is function-
ally equivalent to the original script. The parallel computa-
tion specification plus the script fragments are then executed
by a parallel runtime system, which causes multiple
instances of the original software tool and/or supplemental
programs to be run as parallel processes. The resulting
processes will read input data and produce output data,
performing the same computation as was specified by the
original script. The combination of the analyzer, runtime
system, original software tool, and supplemental programs
will, for a given script and input data, produce the same
output data as the original software tool alone, but has the
capability of using multiple processors in parallel for sub-
stantial improvements in overall “throughput”.

In one aspect, the invention includes a method, system,
and computer program for parallelizing a computer appli-
cation program based on a script of a script-driven software
tool, comprising automatically analyzing the script and
producing a parallel computation specification based on
such analysis, where such parallel computation specification
provides functional equivalence to the script when executed
by a parallel runtime system. In another aspect, the invention
includes a method, system, and computer program for
parallelizing a computer application program based on a
script of a script-driven software tool, comprising automati-
cally analyzing the script and producing a parallel compu-
tation specification plus a script fragment set based on such
analysis, where such parallel computation specification and
script fragment set provides functional equivalence to the
script when executed by a parallel runtime system.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and draw-
ings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a data flow diagram of a preferred embodiment
of the invention.



US 7,047,232 Bl

3

FIG. 2 is a data flow diagram showing the preferred
method for automatically analyzing an initial script and
producing a specification of a parallel computation plus
script fragments.

FIG. 3 is an example of a serial dataflow graph in
graphical form.

FIG. 4 is an example of a parallel dataflow graph in
graphical form.

FIG. 5 shows an example of an initial script and a
representation of the sequence of statements it contains.

FIG. 6 is a diagram showing examples of dataset table,
processing step, and dataset access tables.

FIG. 7 is a flowchart showing an example of converting
a sequence of steps into a serial dataflow graph.

FIG. 8 is a table showing a repertoire of parallelization
methods.

FIG. 9 is a flowchart showing the preferred method for
parallelizing a serial dataflow graph.

FIG. 10 is a diagram showing examples of initial parallel
dataset, processing step, and data access tables.

FIG. 11 is a diagram showing the parallel dataset, pro-
cessing step, and dataset access tables of FIG. 10 after
parallelization but before resolution of conflicts.

FIG. 12 is a flowchart showing a preferred method for
resolving partitioning conflicts.

FIG. 13 is a diagram showing FIG. 11 after resolution of
Application Step 1 of the parallel processing step table.

FIG. 14 is a diagram showing FIG. 13 after resolution of
Application Step 2 of the parallel processing step table.

FIG. 15 is a diagram showing FIG. 14 after resolution of
Application Step 3 of the parallel processing step table.

FIG. 16 is a flowchart showing a preferred method for
generating script fragments.

FIG. 17 shows an example of a script fragment file
containing several scripts.

FIG. 18 is a diagram showing F1G. 15 after generation of
script fragments.

FIG. 19 is a flowchart of one method of generating a
parallel computation specification.

FIG. 20 is a diagram showing the generation of temporary
datasets.

FIG. 21 is a diagram showing the final parallel compu-
tation specification 3.

FIG. 22 is a dataflow diagram showing an example of
parallelizing the COPY operation.

FIG. 23 is a dataflow diagram showing an example of
parallelizing the AGGREGATE operation.

FIG. 24 is a block diagram showing one method for
storing a partitioned dataset.

FIG. 25 is a dataflow diagram of local-global paralleliza-
tion.

FIG. 26 is a dataflow diagram showing an example of
External Parallelism.

FIG. 27 is a dataflow diagram showing an example of
Statement Decomposition.

FIG. 28 is a dataflow diagram showing an example of a
serial SAS script that uses the MEANS procedure to calcu-
late descriptive statistics on a dataset and produce an output
file.

FIG. 29 is a dataflow diagram showing an example of a
serial SAS script that uses the FREQ procedure to calculate
table driven statistics on a dataset and produce an output file.

FIG. 30 is a dataflow diagram showing an example of a
serial SAS script that uses the UNIVARIATE procedure to
calculate univariate statistics on a dataset and produce an
output file.

30

35

40

45

50

55

60

4

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Overview

FIG. 1 is a data flow diagram of a preferred embodiment
of the invention. A software tool script 1 in a language such
as SAS is automatically analyzed 2 in order to produce a
specification for a parallel computation 3 plus a set of “script
fragments” 4. The combination of the parallel computation
specification 3 plus the script fragments 4 is functionally
equivalent to the original script 1. The parallel computation
specification plus the script fragments are then executed by
a parallel runtime system 5, which may be, for example, the
Co>Operating System™ run time system from Ab Initio
Software Corporation. Such execution causes multiple
instances of the original software tool 6 and/or supplemental
programs 7 to be run in parallel. The resulting processes 6,
7 will read input data 8 and produce output data 9, perform-
ing the same computation as was specified by the original
script 1. The combination 10 of the analyzer, runtime
system, tool, and supplemental programs will, for a given
script 1 and input data 7, produce the same output data 8 as
the original software tool 6 alone, but uses multiple proces-
sors in parallel to obtain substantial improvements in overall
“throughput™.

In order to apply the preferred embodiment, the software
tool 6 and scripting language for each script 1 should satisfy
certain conditions:

The scripting language should consist of sequences of
statements, such as processing steps and dataset defi-
nitions (e.g., files, databases, temporary datasets).

The scripting language should specify, explicitly or
implicitly, any data read/written by the processing
steps. This may include temporary datasets used to pass
information between processing steps; external datasets
defined in dataset definition statements; and external
datasets referenced (perhaps implicitly) within process-
ing steps.

Methods should be known (e.g., from conventional algo-
rithms) to parallelize at least some of the processing
steps. Parallelization methods include partitioning data
into subsets and running an indicated processing step
on each subset; inserting a separately available parallel
implementation of the procedure; and dividing data into
partitions and running a “global procedure” on each
subset, then running a “local procedure” on the output
of the global procedure (the global and local procedures
may preferably—but need not necessarily—be imple-
mented in the base scripting language).

FIG. 2 is a data flow diagram showing the preferred
method for automatically analyzing 2 an initial script 1 and
producing a specification of a parallel computation 3 plus
script fragments 4. The script analysis method 2 may be
implemented as follows:

Step 101: Divide the input script 1 into a sequence of

statements 102.

Step 103: Process the sequence of statements 102 so as to
produce a serial dataflow graph 104 representing the
exchange of data between processing steps.

Step 105: Parallelize the serial dataflow graph 104,
thereby producing a parallel dataflow graph 106.

Step 107: Optionally, analyze the parallel dataflow graph
106 to generate “script fragments” 4, to allow the
original script-driven application to execute some of
the processing steps.



US 7,047,232 Bl

5

Step 108: The resulting dataflow graph 106 may then be
transcribed to a specification of a parallel computation
3.

At several points in the algorithm, the computation being
performed is represented as “dataflow graphs”. There are
two cases: the serial dataflow graph 104, which represents
the computation as performed, serially, by the original
application; and the parallel dataflow graph 106, which
represents the computation as performed, in parallel, by the
combination of the parallel runtime system 5, the original
software tool 6, and supplemental programs 7 (described
further below). These dataflow graphs 104, 106 may be
represented in various ways, but most often are represented
either in graphical form (e.g., FIG. 3) or as tables represent-
ing the vertexes and edges of the graph (e.g., FIG. 6). Both
notations may be used as convenience dictates.

FIG. 3 is an example of a serial dataflow graph 104 in
graphical form. Such a graph typically has of a set of
vertexes which represent, for example, the dataset(s) 201,
202 being read by the script; the dataset(s) 208 being written
by the script; the processing Steps 203, 205, 207 contained
in the script; and any intermediate results 204, 206 passed
from one step to another, either explicitly or implicitly.

A typical serial dataflow graph 104 also has a set of
directed edges 220226 indicating the datasets accessed by
each processing step. In the illustrated embodiment, edges
directed into processing Steps 220, 221, 223, 225 indicate
that a dataset/intermediate result is being read, while edges
directed out of a processing Step 222, 224, 226 indicate that
a dataset/intermediate result is being written by a processing
step.

FIG. 4 is an example of a parallel dataflow graph 106 in
graphical form. Typically, a parallel dataflow graph is iden-
tical to the corresponding serial dataflow graph except for
the following:

Some of the original processing Steps 203, 205 have been
marked for parallel execution (indicated by heavy line
weight).

Some of the original intermediate results 204, 206 have
been marked as being “partitioned” datasets (indicated
by heavy line weight).

Some of the original dataset accesses 220, 221, 222, 223,
224 are marked as accessing parallel data (indicated by
heavy line weight).

Some new intermediate results 212, 213, 215, 217, pro-
cessing Steps 210, 211, 214, 216, and dataset accesses
227-234 have been added in order to partition data as
required by various processing steps. Some of the new
intermediate results 212, 213, 215 are marked as par-
titioned. Some of the new processing Steps 210, 211,
214 are marked for parallel execution. Some of the new
dataset accesses 228, 230, 231, 232, 233 are marked as
accessing parallel data.

Notations as to partitioning key (e.g., “By v2, v3”) have
been added to various processing Steps 205, datasets
215, 206, and dataset accesses 223, 224, 232, 233.
These notations indicate the manner of data partition-
ing, as will be explained below.

While the invention has general applicability to parallel-
izing applications based on script-driven tools, the inventive
method does require tailoring for each specific script-based
tool, based on details of the facilities provided by the
application and the semantics of the application’s scripting
language. The inventive method also requires some tailoring
to the specific parallel runtime system being used. Given the
methods contained herein plus the application-specific infor-
mation just noted, such tailoring can be done by a program-

o
<

35

40

45

65

6

mer of ordinary skill. Details of how to address some
specific issues which arise in parallelizing SAS applications
are set forth below.

ILLUSTRATIVE EXAMPLE OF A
SCRIPT-DRIVEN APPLICATION

In order to illustrate some of the problems addressed by
the invention, a hypothetical data analysis program called
analyze will be described, along with its scripting language.
The purpose of this hypothetical program and scripting
languages is to illustrate features of scripting languages
which are common and conventional, and to provide a basis
for various examples which will be used to illustrate meth-
ods of parallelizing applications of script-driven tools.

The hypothetical “analyze” program has the following
basic capabilities:

Reading data from files or relational databases.

Writing data to files or relational databases.

Transforming one dataset to another by performing
simple calculations on each record of a dataset.

Concatenating datasets.

Computing the aggregate functions “SUM”, “MIN”, and
“MAX”. These aggregate functions can be applied to
the full dataset. Alternately, a “grouped aggregate” may
be computed (as in the SQL “GROUP BY” or SAS
“BY” and “CLASS” statements). This will be illus-
trated below.

Analyzing data by application of an analysis algorithm.

1. Invoking the Application

In this illustration, the application is invoked via a “com-
mand line” which specifies the name of the application
(“analyze”), the name of a file containing a script, and zero
or more command-line parameters. For example, the fol-
lowing command line would run the “analyze” application,
using the script “script1” and specifying the command-line
parameter “datafilel”:

analyze script] datafilel

Command-line parameters may be referenced from within
the script, as necessary, by a construct of the form $<num-
ber>, such that $1 will refer to the first command-line
parameter, $2 will refer to the second command-line param-
eter, and so forth. References to command line parameters
may be used in place of filenames in dataset declarations.

2. Dataset Declarations

A dataset is a sequence of records. In the illustrated
example, each record consists of a list of space-separated
data fields, and the first record of a dataset contains the
names of the data fields (for brevity sake, some examples
will omit the list of field names). For example:

custno month year balance limit
00001 01 98 0400 1000
00001 02 98 0600 1000
00001 03 98 0200 1000
00002 01 98 0100 3000
00002 02 98 0000 3000

Datasets may be declared as follows:

INPUT datasetname filename
Declares a dataset to be read. The “filename” gives the
name of the file containing the data. The “datasetname”
may be used to refer to the dataset elsewhere in the
seript.



US 7,047,232 Bl

7
OUTPUT datasetname filename

As above, but declares a dataset to be written by the
application.

TEMP datasetname filename

As above, but declares a temporary dataset to be used
within the application.

DB_IN datasetname tablename
Like the INPUT statement, but gets its data from a
relational database table called tablename. The type of
the data is determined by querying the database.

DB_OUT datasetname tablename

Like the OUTPUT statement, but sends its data to a

relational database table called tablename.

For example, if data to be processed is in a file, an input
dataset might be declared as follows:

INPUT customers customers.dat

Alternatively, if the data was in a database table, an input
dataset might be declared as follows:

DB_IN customers cust_table

A command line parameter might also be used to name a
file for a dataset. For example:

INPUT customers $1

3. Processing Steps

The hypothetical analyze application defines the follow-
ing processing steps: copy, concatenate, aggregate, and
analyze. Each of these processing steps produces a single
output and, except for the concatenate step, each step gets its
data from a single input.

By default, the output of one processing step will be used
as the input of the next processing step. For example, in the
following script step1’s output will be used as step2’s input:

stepl

step2

If a data statement comes immediately before a process-
ing step, then the processing step will get its input from the
data statement. Similarly, if a data statement comes imme-
diately after a processing step, then the processing step will
write its data to the specified dataset. For example, in the
following script stepl will read its input from the indata
dataset and write its output to the outdata dataset:

INPUT indata input.data

stepl

OUTPUT outdata output.data

These rules may be overridden by adding a clause of the
form OUTPUT=dataset or INPUT=dataset to any process-

ing step. For example, in the following script stepl will get
its data from indata and write to outdata:

INPUT indata input.data

OUTPUT outdata output.data

stepl INPUT=indata OUTPUT=outdata

4. The Copy Statement

The copy statement has the following syntax:
COPY field=expression, field=expression . . .

The copy statement copies one dataset to another. Each
record in the output dataset is constructed by evaluating the
indicated expressions, with variables in the expressions
standing for fields in the input record. For example, suppose
the following dataset is to be processed:

15

40

45

wn
o

60

65

vl v2 v3
1 2 3
2 4 2

Here is a sample script:

INPUT indata input.data

COPY vl=vl, v2=v2, v3=v3, v4=v1+v2+v3
OUTPUT outdata output.data

The following output would be produced:

vl v2 v3 v4
1 2 3 6
2 4 2 8

5. The Concatenate Statement

The concatenate statement has the following syntax:

CONCATENATE datasetl dataset2 . . .

The output of this statement is the result of reading each
of the specified datasets and writing all their records to a
single output dataset. The order of the output data does not
matter. However, the list of fields in the datasets must match.
In the illustrated embodiment, the CONCATENATE opera-
tion does not obey the default input rules used by other
processing statements (i.e., it does not take, as input, the
output of the previous statement).

6. The Aggregate Statement

The aggregate statement is used to compute the following
aggregates over sets of records: SUM, MIN (minimum),
MAX (maximum). The aggregate statement has the follow-
ing syntax:

AGGREGATE fileld=aggop expression, field=aggop

expression . . . [BY key, key . . . |

An “aggregation operation” (aggop) consists of one of the
keywords SUM, MIN, MAX. If no BY clause is specified,
then the output of the AGGREGATE operation is a single
record containing the sums/minima/maxima (as appropriate)
of the indicated expressions, computed across the entire
dataset. For example, suppose the following dataset is to be
processed:

value

1
2
3
4

Here is a sample script:

INPUT indata input.data

AGGREGATE v1=MIN value, v2=MAX value, v3=SUM
value

OUTPUT outdata output.data

This produces the following output:

vl v2 v3

If the BY clause is specified, then the data will be divided
into subsets, with each subset having identical values for all
the keys specified in the BY clause. The aggregates will be
computed for each such subset. The keys in the BY clause



US 7,047,232 Bl

9

will be put at the front of each output record. For example,
suppose the following dataset is to be processed:

k1 k2 value
1 2 7
3 4 1
3 4 2
3 4 3

Here is a sample script:
INPUT indata input.data

AGGREGATE v1=MIN value, v2=MAX value, v3=SUM )

value BY k1, k2
OUTPUT outdata output.data
This produces the following output:

k1 k2 vl v2 v3
1 2 7 7 7
3 4 1 3 6

7. The Analyze Statement

The analyze statement is used to invoke an algorithm
which computes a single integer value based on a set of
records. As with aggregate, the analyze statement takes an
optional BY clause. The analyze statement is included to
illustrate the measures which may be taken in cases where
one or more statements cannot be parallelized.

ANALYZE [BY key, key . . . |;

ILLUSTRATIVE EXAMPLE OF A PARALLEL
RUNTIME SYSTEM

In order to run the example application in parallel, it is
necessary to employ a “parallel runtime system.” This is a
software system which allows programs to be simulta-
neously run on multiple processors. While the methods
described in this disclosure are not specific to any particular
parallel runtime system, a simple runtime system will be
described for purposes of illustration. The sample runtime
system has four statements: run, simple-partition, hash-
partition, and gather. The sample runtime system uses data
in the same format as used by the analyze system.

1. The Run Statement
The run statement has the form:
run count program argument] argument2

The run statement invokes count instances of the specified
program, passing the specified arguments on the command
line to the program instances. For example, the statement
run 3 myprogram argl would run three instances of mypro-
gram in parallel, providing each instance with the command
line parameter argl.

Any of the arguments may optionally consist of a list of
count semicolon-separated elements. For example, the argu-
ment a; b; ¢ would be interpreted as a list of three elements,
a, b, and c¢. When the program is run, the n? invocation of
each program will be called with the n* element of each
such list. For example, the statement run 2 myprogram al;
a2 bl; b2 will run two instances of myprogram in parallel.
The first instance will be given the arguments al b1, and the
second will be given the arguments a2 b2.

10

35

40

45

10

2. The Simple-Partition Statement

The simple-partition statement has the form:

simple-partition input output

The simple-partition statement takes records from a semi-
colon-separated list of input files and divides them up among
a semicolon-separated list of output files. The division may
be done in any matter which divides the data up more-or-less
equally. For example, in round-robin partitioning, the k”
input record from each input file is written to output file (k
mod m), where m is the number of output files. This
operation is done in parallel. For example, suppose the
following two input files “in1” and “in2” are to be pro-

5 cessed:

[

Using the statement simple-partition inl; in2 outl; out2;
out3, may result in the following three output files:

3. The Hash-Partition Statement

The hash-partition statement has the form:

hash-partition key input output

The hash partition statement reads records from a semi-
colon-separated list of input files and divides them up among
a semicolon-separated list of output files. The statement
requires a semicolon-separated list of key fields to be
specified. For each input record, the hash partition operation
will compute a “hash function” based on the specified
key-values and use this function to determine the output file
to which the record will be written. For example, the hash
function could be computed as (k mod m)+1, where k is the
sum of the values of the key fields and m is the number of
output files. When this is done, all records having a given
key-value will end up in the same output file. This operation
is done in parallel. For example, suppose, suppose two input
files “inl1” and “in2” are to be processed



US 7,047,232 Bl

11

vl v2
inl:

0 0
0 1
2 2
in2:

0 3
1 4
2 5

Using the statement hash-partition v1 inl; in2 outl; out2;
out3 results in the following three output files:

vl v2
outl:

0 0
0 1
0 3
out2:

1 4
out3:

2 2
2

4. The Gather Statement

The gather statement has the form:

gather input output

The input is a semicolon-separated list of files, and the
output is a single file. The records in the input file are
combined into a single output file. This operation is done in
parallel.

PREFERRED EMBODIMENT OF THE
INVENTION

The following subsections describe the preferred embodi-
ment of the “analyze script” 2 steps set forth in FIG. 2

1. Step 101—Dividing into Statements

Referring again to FIG. 1 and FIG. 2, Step 101 divides the
original script 1 into a sequence of statements 102. This is
primarily a matter of parsing the original script and produc-
ing a “parse tree.” Methods for parsing computer languages
are extremely well known; in most cases, all that is required
is to write a “grammar” and process that grammar with a
“parser generator” such as “yacc”. The result will be a
program to perform the parsing.

FIG. 5 shows an example of an initial script 1 and a
representation of the sequence of statements 102 it contains.
These statements are categorized as datasets 201, 202, 208
and processing Steps 203, 205, 207. For convenience sake,
textual identifiers (e.g., “Stepl”) have been added to the
statements.

2. Step 103—Counstructing a Serial Dataflow Graph

Step 103 is the construction of a serial dataflow graph
104. This is done by analyzing the sequence of statements
102. The goal is to produce a set of nodes representing
datasets, processing steps, and intermediate results, and to
produce a set of edges indicating the datasets/temporary
results which are read or written in each processing step.

10

15

o

0

%}

5

40

45

50

55

60

12

In this illustration, the serial dataflow graph 104 will be
represented by three tables: a dataset table 601, a processing
step table 602, and a dataset access table 603 (representing
dataset access by the processing steps). FIG. 6 is a diagram
showing examples of dataset table, processing step, and
dataset access tables.

In the illustrated embodiment, each entry in the dataset
table 601 consists of:

A name for each dataset.

The class of the dataset (e.g., input, output, temporary).

An indication as to the location of the data (e.g., a
filename).

An indication of whether the dataset was explicitly
present in the original script.

Any other information present in the original script.

In the illustrated embodiment, each entry in the process-

ing step table 602 consists of:

A name for each processing step.

The operation being performed.

Any parameters or other information supplied in the script
(e.g., aggregate expressions, any BY clauses).

In the illustrated embodiment, each entry in the dataset

access table 603 consists of:

The name of a processing step.

The name of a dataset which is accessed by that process-
ing step.

The direction of the access (e.g., input vs. output).

An indication as to the role of the dataset. For example,
a processing step might read two inputs “old” and
“new” and write two outputs “output” and “errors.”
Most processing steps will read from a single input
(e.g., “in”) and write to a single output (e.g., “out”).

FIG. 7 is a flowchart showing an example of converting
a sequence of steps into a serial dataflow graph. In the
preferred embodiment, this method includes the following
steps.

Step 500: Create initially empty tables for datasets 601,
processing steps 602, and dataset accesses 603 (see
FIG. 6 also).

Step 501: Scan the statements 102 and create an entry in
the dataset table 601 for each dataset 201, 202, 208 and
global variable identified in the statements 102. Each
entry is constructed by extracting the name of the
global variable or dataset (plus additional dataset-
specific information from the dataset statement) and
noting that the dataset or global variable was explicitly
present in the original script.

Step 502: Determine whether any processing Steps 203,
205, 207 have not yet been analyzed and added to the
processing step table 602. If all processing steps have
been analyzed, the analysis is done (Step 512).

Step 503: Select the next unanalyzed processing step.

Step 504: Create an entry in the processing step table 602
for each such processing step. This entry should contain
a name for the processing step. These names may be
automatically generated, e.g., by generating a sequence
of “step numbers.” Each entry should also include any
parameters extracted from the processing step state-
ment.

Step 505: Determine which datasets 201, 202, 208 are
explicitly referenced by the current processing step,
and create one entry in the dataset access table 603 for
each such reference.

Step 506: Determine whether the current processing step
implicitly references an existing dataset. If so, loop as
follows until each reference to an implicit input is
processed:



US 7,047,232 Bl

13

Step 507: Examine the context of the processing step to
determine which dataset is implicitly referenced.

Step 508: Create an entry in the dataset access table
603, with the “processing step” being the current
processing step and the “dataset” being the implicitly
referenced dataset. In almost all cases, this form of
implicit reference will be to an “implicit input”.

Step 509: Determine whether the current processing step
implicitly creates a new dataset. If so, loop as follows
until each reference to a new dataset is processed:
Step 510: Create an entry in the dataset table 601 for a

new implicit dataset. This involves creating a new
dataset identifier and noting that the dataset was not
explicitly created.

Step 511: Create an entry in the dataset access table
603, with the “processing step” being the current
processing step, and the “dataset” being the newly
created intermediate result dataset. In almost all
cases, this form of implicit reference will be to an
“implicit output”.

The exact method for resolution of implicit dataset ref-
erences (Steps 507 and 510) is dependent on the semantics
of the scripting language being processed. However, the
rules for this resolution are typically quite simple, and the
implementation of such resolution strategies should be a
matter of routine programming. The rules used for implicit
dataset resolution in the analyze scripting language
described above are representative of one way to perform
this task:

If a processing step requires input data, and no input
dataset is specified, and the previous statement is a
dataset, then the previous statement’s dataset is implic-
itly referenced as the current processing step’s input.

If a processing step requires input data, and no input
dataset is specified, and the previous statement is a
processing step, then the output of the previous pro-
cessing step is implicitly referenced as the current
processing step’s input.

If a processing step produces output, and no output dataset
1s specified, and the next statement is a dataset, then the
next statement’s dataset is implicitly referenced as the
current processing step’s output.

If a processing step produces output, and no output is
specified, and the next statement is a processing step,
then a new intermediate dataset is implicitly created
and implicitly referenced as the current processing
step’s output.

As an example of resolution of implicit references, see
FIG. 6. The sample script 1 shown in FIG. 6 contains three
processing Steps 203, 205, 207, shown in the processing step
table 602. For this example, the explicit and implicit dataset
references are as follows:

The first processing step 203 is the “CONCATENATE”
operation, which explicitly reads from the datasets
indatal 201 and indata2 202. No output dataset is
specified, so the processing step implicitly creates and
references an intermediate result “templ” 204 in the
dataset table 601.

The second processing step 205 is the “AGGREGATE”
operation. No input is specified, so the operation
implicitly references the output “templ” 204 of the
previous step 203 as its input. No output is specified, so
the processing step implicitly creates and references an
intermediate result “temp2” 206 in the dataset table
601.

The final processing step 207 is the “ANALYZE” opera-
tion. No input is specified, so the operation implicitly

40

45

65

14

references the output “temp2” 206 of the previous step
205 as its input. No output is specified, but the next
operation is the output dataset “outdata” 208, so “out-
data” is implicitly referenced.

3. Step 105—Parallelizing the Serial Dataflow Graph

a. Overview

This section will describe how, given a repertoire of
methods for parallelizing some of the individual steps of the
application, it is possible to automatically generate a parallel
dataflow graph 106 from the serial dataflow graph 104. For
this method to work, the parallelization repertoire should be
encapsulated as a database, program, or algorithm which
may examine a single vertex in the serial dataflow graph 104
and generate one or more vertexes and edges in the parallel
dataflow graph 106. Given a suitable repertoire of parallel-
ization methods plus representations for the serial and
parallel dataflow graphs, construction of such a repertoire
application method should be a matter of routine program-
ming.

FIG. 8 is a table 900 showing a repertoire of paralleliza-
tion methods. In general, each parallelization method will
have an applicability test 901, a rewrite rule 902, and some
notion of optimality (e.g., represented by the order in which
the parallelization methods are considered). FIG. 8 is
described in further detail below.

Many methods are known for parallelizing computations
which might be included in the repertoire. The present
invention primarily (though not exclusively) utilized one
particular family of techniques which involve:

Dividing the input data into multiple disjoint subsets. This

is called “partitioning.” Each such subset is called a
“partition.” Many forms of partitioning are known,
differing in the manner in which the data is divided into
subsets.

Running multiple instances of a program, arranging for

each instance to process a different partition of the data.
This is called “partitioned execution.”

If the input data can be suitably partitioned, then parti-
tioned execution will generally lead to large improverments
in performance. For example, if data were partitioned 30
ways, then each instance of the processing step would
process Y30 the data, and should thus complete its work in Y30
the time which would be required under serial execution. For
further discussion of partitioning, see U.S. Pat. No. 5,819,
021, issued Oct. 6, 1998, entitled OVERPARTITIONING
SYSTEM AND METHOD FOR INCREASING CHECK-
POINTS IN COMPONENT-BASED PARALLEL APPLI-
CATIONS, and assigned to the assignee of the present
invention. The teachings and contents of U.S. Pat. No.
5,819,021 are hereby incorporated by reference.

FIG. 9 is a flowchart showing the preferred method for
parallelizing a serial dataflow graph 104. The method takes,
as its input, a serial dataflow graph 104, preferably repre-
sented as dataset 601, processing step 602, and data access
tables 603. The method produces, as its output, a parallel
dataflow graph 106, preferably represented as a parallel
dataset table 801, a parallel processing step table 802, and a
parallel data access table 803. FIG. 10 is a diagram showing
examples of initial parallel dataset, processing step, and data
access tables. The method includes the following steps:

Step 700: Initialize the parallel dataset 801, processing

step 802, and data access 803 tables. This is done by
copying the information contained in the serial dataset
601, processing step 602, and data access 803 tables,
and initializing a “partitioning” data element. For
datasets stored in normal (serial) files 201, 202, 208, the
partitioning data element will be initialized to “serial”,



US 7,047,232 Bl

15

signifying that these files are not parallel. Otherwise,

the partitioning data element will be left blank, signi-

fying that the manner of parallelization has not yet been
determined.

Step 701: The system will repeatedly look for processing
steps which have not yet been processed. This may be
done by scanning the processing step table 802 for
steps having blank “partitioning” data elements.

Step 707: If all steps have been parallelized. then a
“partitioning conflict resolution algorithm” is invoked
to ensure that data is correctly partitioned. This algo-
rithm is discussed below. Once this has been done,
parallelization is complete (Step 708).

Step 702: If the graph contains unprocessed steps, then
one step is selected (e.g., arbitrarily).

Step 703: The parallelization repertoire table 900 will
then be consulted to locate a parallelization method
which is applicable to the step just selected.

Step 705: If a parallelization method was located, then its
rewrite rule 902 is applied to modify the information in
the parallel dataset 801, processing step 802, and data
access tables 803. Once this is done, the algorithm
looks for another unprocessed element (at Step 701).

Step 706: If no parallelization method was located, then
the step’s “partitioning” method is set to “serial”,
indicating that the step must be run serially. Once this
is done, the algorithm looks for another unprocessed
element (at Step 701).

b. Example

The method just described may be applied 1o a serial

dataflow graph in the following manner. As noted above,
FIG. 10 is an example of initial parallel dataset, processing
step, and dataset access tables. FIG. 11 is a diagram showing
the parallel dataset, processing step, and dataset access
tables of FIG. 10 after parallelization but before resolution
of conflicts (see also FIGS. 6, 8, and 9).

Step 700: Initialization.

The parallel dataset table 801 is initialized.

The input 201, 202 and output 208 datasets are
marked as “serial.”

All other information is simply copied from serial
dataset table 601.

The contents of the serial processing step table 602 are
copied to produce the parallel processing step table
802.

The contents of the serial dataset access table 603 are
copied to produce the parallel dataset access table
803.

Step 701: An unprocessed step 203 (Application Step 1 in
the parallel processing step table 802) is selected.

Step 703: By reference to the parallelization repertoire
table 900, it is determined that the CONCATENATE
(“CONCAT”) operation 903 may be parallelized by
“simple partitioning”.

Step 705: The rewrite rule for simple partitioning per-
forms the following actions (see FIG. 11):

The processing step 203 is marked for “simple” parti-
tioning.

The step’s inputs 220, 221 and output 222 are marked
as accessing simply partitioned data.

Step 701: Looping back, an unprocessed next step 205
(Application Step 2 in the parallel processing step table
802) is selected.

Step 703: By reference to the parallelization repertoire
table 900, it is determined that the “AGGREGATE
BY” operation 906 may be parallelized by “key-based
partitioning”.

10

15

25

30

35

40

45

50

55

60

65

16

Step 705: The rewrite rule for key-based partitioning
performs the following actions (see FIG. 11):

The processing step 205 is marked as partitioned “by
v2, v3”.

The step’s input 223 and output 224 are marked as
partitioned “by v2, v3”.

Step 701: Looping back, an unprocessed step 207 (Appli-
cation Step 3 in the parallel processing step table 802)
is selected.

Step 703: By reference to the parallelization repertoire
table 900, it is determined that no parallelization
method has been indicated.

Step 706: Accordingly, the processing step is marked for
serial execution (see FIG. 11):

The partitioning method for the processing step 207 is
set to “serial”.

The step’s input 225 and output 226 have their parti-
tioning method marked as “serial”.

Step 701: Looping back, no more unprocessed steps are
located.

Step 707: Partitioning conflicts are resolved (see discus-
sion immediately below). The result of this process is
shown as FIG. 11.

¢. Resolution of Partitioning Conflicts

Once all processing steps have been either parallelized or

marked as serial, partitioning conflicts can be resolved (Step
707 in FIG. 9). In the illustrated embodiment, at the start of
this algorithm, all processing steps will be labeled with a
partitioning method, such as “serial”, “simple”, or “by key”.
Similarly, all external datasets will be labeled with a parti-
tioning method. Dataset accesses will also be marked with
a partitioning method. At this point, the graph may contain
“partitioning conflicts”. For example, there will often be
mismatches between dataset access entries and the datasets
they access. For example, Application Step 1 in FIG. 11 has
two inputs 220, 221 which are marked for “simple” parallel
partitioning, but the datasets 201, 202 they access are
marked as “serial”. As another example, temporary datasets
may not yet have their partitioning method filled in.

FIG. 12 is a flowchart showing a preferred method for

resolving partitioning conflicts (Step 707 in FIG. 9):

Step 1600: Determine whether there are any unprocessed
steps in the graph. If not, then algorithm is done (Step
1601).

Step 1602: Select a processing step such that all upstream
steps have been processed.

Step 1603: Determine whether the processing step has any
dataset accesses which are unprocessed. If there are no
such accesses, then the step is marked as processed
(Step 1604) and the algorithm looks for the next step to
process (at Step 1600).

Step 1605: Select an unprocessed dataset access associ-
ated with the current processing step.

Step 1606: Determine whether the dataset access’s parti-
tioning method matches the dataset’s partitioning
method. In the preferred embodiment, the following
rules apply:

If the dataset’s partitioning method is blank, then there
is a mismatch.

If the dataset’s partitioning method is serial, and the
access’s method is not serial, then there is a mis-
match.

If the dataset’s partitioning method is “simple” or
“by-key”, and the access’s method is “serial”, then
there is a mismatch.



US 7,047,232 Bl

17

If the dataset’s partitioning method is “simple”, and the
access’s method is “by-key”, then there is a mis-
match.

If the dataset’s partitioning method is “by-key”, and the
access’s method is “by-key”, but the keys differ, then
there is a mismatch.

Otherwise the partitioning methods match, the access
may be marked as processed (Step 1607) and the
algorithm looks for another unprocessed dataset
access (at Step 1603).

Step 1608: If the dataset’s partitioning method is blank
(this happens when accessing a temporary dataset),
then the dataset’s partitioning method is set to be the
same as the dataset access’s partitioning (Step 1609),
after which the access is marked as processed (Step
1607) and the algorithm looks for another unprocessed
dataset access (at Step 1603).

If the dataset’s partitioning method is not blank, then it is
necessary to insert one or more additional processing steps
(called “adapters™) to repair the partitioning conflict. An
adapter may read one dataset and produce a second dataset
having some desired partitioning. Further discussion of
adapters is set forth in U.S. patent application Ser. No.
08/678,411, filed Jul. 2, 1996, entitled EXECUTING COM-
PUTATIONS EXPRESSED AS GRAPHS, and assigned to
the assignee of the present invention. The teachings and
contents of U.S. patent application Ser. No. 08/678,411 are
hereby incorporated by reference.

The adapter which is selected depends on the partitioning
required by the output dataset:

The simple-partition adapter produces a parallel dataset.
Its input is a serial dataset, and its output is a simply
partitioned dataset.

The gather adapter produces a serial dataset. Its input is a
partitioned dataset and its output is a serial dataset.

The hash-partition adapter produces a dataset partitioned
by some set of keys. The desired keys are passed as
parameters to the hash-partition operation. Its input is
any dataset (serial, simply partitioned, or key-parti-
tioned), and its output is a dataset partitioned on the
specified key.

The order in which an adapter is inserted depends on the
type of data access. Accordingly, the method continues as
follows:

Step 1610: Determine whether the dataset access repre-
sents an input (vs. an output) of the processing step
being processed.

Step 1611: If the reference is to an input, then an adapter
followed by a temporary dataset is inserted between the
source dataset and the processing step. The partitioning
of the adapter will match that of the source dataset,
while the partitioning of the temporary dataset will
match that of the dataset access.

Step 1612: If the reference is to an output, then a
temporary dataset followed by an adapter will be
inserted between the processing step and the destina-
tion dataset. The partitioning of the adapter will match
that of the source dataset, while the partitioning of the
temporary dataset will match that of the dataset access.

Once the adapter and temporary dataset have been
inserted, the access will be marked as “processed”
(Step 1607) and the algorithm will look for another
unprocessed dataset access (at Step 1603).

d. Example

As noted above, FIG. 11 shows the parallel dataset,

processing step, and dataset access tables of FIG. 10 after

—

0

15

30

35

40

45

50

55

60

65

18

parallelization but before resolution of conflicts. FIG. 13 is
a diagram showing FIG. 11 after resolution of Application
Step 1 of the parallel processing step table. FIG. 14 is a
diagram showing FIG. 13 after resolution of Application
Step 2 of the parallel processing step table. FIG. 15 is a
diagram showing FIG. 14 after resolution of Application
Step 3 of the parallel processing step table. Application of
the method shown in FIG. 12 results in the following process
steps:

Steps 1600, 1602: The algorithm determines that Appli-
cation Step 1 (processing step 203) has not been
processed (see FIG. 11).

Steps 1603, 1604: The algorithm determines that the first
input 220 of Application Step 1 has not yet been
processed.

Step 1606: The dataset 201 is marked “serial”, and the
access 220 is marked “simple,” so there is a conflict.

Step 1608: The partitioning of the dataset 201 is non-
blank.

Step 1610: The dataset access reference 220 references an
input.

Step 1611: An adapter and a temporary dataset are
inserted between the input and the processing step.

A simple-partition adapter Application Step 1a 210 is
created (see FIG. 13). As noted above, a partitioner
produces a simply partitioned dataset, which
matches the partitioning required by the dataset
access reference 220 being processed.

The partitioner’s partitioning is set to “serial”, to match
the input 201.

A temporary dataset “temp3” 212 is created. The tem-
porary dataset’s partitioning is set to “parallel”, to
match the dataset access reference 220.

New dataset access references 227, 228 are created to
link the input 201, the adapter 210, and the tempo-
rary dataset 212. The “partitioning” attributes of the
new dataset access references 227, 228 are set to
match the datasets they reference (serial and simple,
respectively).

The existing dataset access reference 220 is re-targeted
to refer to the temporary dataset “temp3” 212.

Step 1607: The dataset access reference 220 is marked as
processed.

Steps 1603, 1604, 1606, 1608, 1610, 1611; 1607: The
same series of operations is repeated for the second
input dataset referenced by Step 1, namely indata2.
This results in the creation of a new partition adapter
Application Step 15 211, temporary dataset “temp4”
213, and dataset access references 229, 230.

Steps 1603, 1604, 1606: The algorithm processes the
output dataset reference 222 of Application Step 1
(processing step 203).

Step 1608: The partitioning of the dataset being accessed,
“templ” 204, is blank.

Step 1609: The partitioning of dataset “templ” 204 is set
to “parallel”, matching the partitioning of the dataset
access reference 222.

Step 1607: The dataset access reference 222 is marked as
“processed”.

Step 1603: The algorithm determines that Application
Step 1 (processing step 203) has no more unprocessed
accesses.

Step 1604: The algorithm marks Application Step 1
(processing step 203) as “processed”.

The state of the graph at this time is show in FIG. 13. The

algorithm continues as follows:



US 7,047,232 Bl

19

Step 1600, 1602: The algorithm next selects Application
Step 2 (processing step 205) for processing.

Step 1603, 1605, 1606, 1608, 1610: The algorithm selects
Application Step 2’s input 223 for processing and
determines that it needs to insert an adapter and tem-
porary dataset between the temporary dataset “templ”
204 and the processing step 205.

Step 1611: The adapter is inserted, as above (See FIG. 14).
This time, a “hash-partition” adapter is chosen, because
the dataset access 223 specifies partitioning “by v2,
v3”. This results in the creation of an adapter Applica-
tion Step 2a 214, a temporary dataset “temp5” 215, and
two dataset references 231, 232.

Steps 1607, 1603, 1605, 1606, 1608: The algorithm
selects Application Step 2’s output 224 for processing,
and determines that the output’s partitioning method is
blank.

Step 1609: The algorithm propagates partitioning method
“by v2, v3” from the dataset access reference 224 to the
temporary dataset “temp2” 206.

Steps 1607, 1603, 1604: The algorithm finishes work on
Application Step2.

The state of the graph at this time is shown in FIG. 14. The

algorithm continues as follows:

Steps 1600, 1602: The algorithm selects Application Step
3 (processing step 207) for processing.

Steps 1603, 1605, 1606, 1608, 1610: The algorithm
selects Application Step 3’s input 225 for processing
and determines that it needs to insert an adapter and
temporary dataset between the temporary dataset
“temp2” 206 and the processing step 207.

Step 1611: The adapter is inserted, as above (see FIG. 15).
This time, a “gather” adapter is chosen, because the
dataset access reference 225 specifies “serial” partition-
ing. This results in the creation of an adapter Applica-
tion Step 3a 216, a temporary dataset “temp6” 217, and
two dataset references 233, 234.

Steps 1607, 1603, 1605, 1606: The algorithm selects
Application Step 3’s output 226 for processing, and
determines that the partitioning for the dataset access
reference 226 matches the partitioning of the output
dataset “outdata” 208.

Steps 1607, 1603, 1604: The algorithm marks Application
Step 3’s output 226 as “processed”, and determines that
Application Step 3 has no further dataset accesses.

Steps 1600, 1601: The algorithm determines that there are
no unprocessed processing steps, and terminates.

The final state of the graph, now fully parallelized, is
shown in FIG. 15. This constitutes the parallelized dataflow
graph 106.

4. Step 107—Generating Script Fragments

In many cases, the original script-driven tool 6 may be
used to implement some processing steps. To do this, an
embodiment of the invention may optionally generate script
fragments 4 for these processing steps. FIG. 16 is a flowchart
showing a preferred method for generating script fragments:

Step 2001: The system determines whether all steps have
been completed. If so, the algorithm terminates.

Step 2002: The system selects an unprocessed step.

Step 2003: If the step is not to be implemented via the
original tool 6, then it is marked as processed (Step
2009) and the algorithm repeats (at Step 2001). For
each processing step which is to be implemented via
the original tool 6, the following actions will be taken:

Step 2004: Declarations for any inputs are generated. The
declarations may make reference to information which

10

15

20

o

5

%}
<

35

40

45

50

55

60

65

20

is available at run-time. For example, the declarations
may reference command-line arguments.

Step 2005: The text of the processing step itself is
generated. In many cases, the text of the processing
step will be identical to that found in the original script
1.

Step 2006: Declarations for any outputs are generated.
The declarations may make reference to information
which is available at run-time. For example, the dec-
larations may reference command-line arguments.

Step 2007: The input declarations, processing step, and
output declarations are written to a file. This file is
called a “script fragment” 4 and will generally contain
a fragment of the original script. FIG. 17 shows an
example of a script fragment file containing several
scripts.

Step 2008: The parallel processing step table 802 is
modified to reference the script, and to note that the
step 1s implemented by invoking the script-driven tool
6.

Step 2009: The current step is marked as processed, and
the algorithm repeats (at Step 2001).

For example, the application shown in FIG. 15 contains
three processing steps 203, 205, 207 which require script
generation. The result, shown in FIG. 17, consists of three
script fragments 2101, 2102, 2103.

The first script fragment 2101, Script 1, corresponds to the
first processing step 203, and declares two input
datasets (indatal and indata2) and one output dataset
(outdata), plus a single processing step (the CONCAT-
ENATE operation). The names of the files used by the
datasets generally will be obtained from the command
line (see parameters listed in FIG. 15).

The second script fragment 2102, Script 2, corresponds to
the second processing step 205, and declares a single
input and output (indata, outdata) and a single process-
ing step (the AGGREGATE operation). The names of
the files used by the datasets generally will be obtained
from the command line.

The third script fragment 2103, Script 3, corresponds to
the third processing step 207, and declares a single
input and output (indata, outdata) and a single process-
ing step (the ANALYZE operation). The names of the
files used by the datasets generally will be obtained
from the command line.

References to the scripts and the analyze application are
then inserted into the parallel processing step table 802. FIG.
18 is a diagram showing FIG. 15 after generation of script
fragments. Note that, at this point, the parallel processing
step table 802 consists entirely of constructs which the
parallel infrastructure can directly execute.

5. Step 108—Generating the Parallel Computation Speci-
fication

In some embodiments, the parallel data flow graph 106
can be executed directly, using the techniques taught in U.S.
patent application Ser. No. 08/678,411. However, it is gen-
erally useful to generate a parallel computation specification
that combines all datasets and parallel processing operations
from the parallel dataset, processing step, and dataset access
tables into one file. One form of this file may be a text file.
This has an advantage when using a run-time system that
accepts text file input. Accordingly, in the preferred embodi-
ment, the final step in analyzing 2 a script is generation 108
of such a parallel computation specification.

FIG. 19 is a flowchart of one method of generating a
parallel computation specification. In the preferred embodi-
ment, this algorithm proceeds as follows:



US 7,047,232 Bl

21

Step 2301: The system generates a specification for each
temporary dataset. For example, this could be done by
generating a list of file names used to store each
temporary dataset. For parallel datasets, some fixed
number n of files could be generated, whereas a single
file could be specified for serial files.

Step 2302: If no unprocessed steps remain, the process is
done.

Step 2303: Otherwise, the algorithm selects a next
unprocessed processing step such that all upstream
processing steps have been processed previously.

Step 2304: The system generates a parallel command to
run the selected processing step.

Step 2305: The current processing step is marked as
processed, and the algorithm loops to test for any
unprocessed steps (at Step 2302)

FIG. 20 is a diagram showing the generation of temporary
datasets. A list of two temporary files has been generated for
each parallel temporary dataset 204, 206, 212, 213, 215, and
a single temporary file has been generated for each serial
temporary dataset 217.

FIG. 21 is a diagram showing the final parallel compu-
tation specification 3. Each processing step from the parallel
processing step table 802 in FIG. 20 has been encoded as one
of the four supported statements in the example parallel
runtime system (i.e., run, simple-partition, hash-partition,
gather). Each reference from the dataset access reference
table 803 in FIG. 20 has been specified by including lists of
dataset filenames on the command lines.

The parallel computation specification 3 plus the script
fragments 4 are then executed by a parallel runtime system
5 which causes multiple instances of the original software
tool 6 and/or supplemental programs 7 to be run in parallel.
The resulting processes 6, 7 perform the same computation
as was specified by the original script 1 but with substantial
improvements in overall “throughput”.

EXAMPLES OF PARALLELIZATION
METHODS

This section will briefly describe several methods of
parallelization which can be used to define a parallelization
repertoire table or database 900 (FIG. 8).

1. Parallelization by Simple Partitioning

In many cases, it is possible to parallelize a processing
step by partitioning the data and then running one instance
of the processing step on each partition. This is typically
helpful when (1) some operation is performed on individual
records, and (2) the operation performed on one record is
independent of the operation performed on any other record.
As used with the present invention, this technique is referred
to as “simple partitioning.” Any partitioning method may be
used, preferably one in which roughly equal quantities of
data will be present in each partition.

In the hypothetical analyze application described above,
the CONCAT and COPY operations may be parallelized by
simple partitioning (parallelization rule 903 in FIG. 8). FIG.
22 is a dataflow diagram showing an example of parallel-
izing the COPY operation. In the serial version 1001 of the
operation, a serial dataset 1003 might be processed by a
COPY processing step 1004, producing an output dataset
1005. In the paralle]l version 1002 of the COPY operation,
the input dataset 1003 would be divided into N partitions
1006. N instances of the COPY operation 1007 would then
be run, each accessing an input data partition 1006. The
results would then be written to N output datasets 1008.

o
<

30

40

45

55

22

Note that the output datasets 1008 constitute a partitioned
representation of the output 1005 produced by the serial
version of the program.
In the preferred embodiment, the rewrite rule 902 for the
simple partitioning strategy generates an “after” dataflow
symbol by use of heavy line weight for the “before” opera-
tion 1020 plus its inputs 1021 and outputs 1022.
2. Parallelization by Key-Based Partitioning
Many operations may be parallelized by partitioning one
or more inputs data based on a “key field.” This is typically
helpful in cases where (1) some operation is performed on
sets of records sharing a common value for a key, and (2)
operations performed on one such set of records are inde-
pendent of operations performed on a different set of
records.
As used with the present invention, this technique is
referred to as “key-based partitioning.” Key-based partition-
ing requires that data be divided into partitions, such that if
two records rl and r2 have the same values for the key k,
they will end up in the same partition. For example, this may
be accomplished by:
Defining a hash function, that is, a numerical function f
which, when applied to a key value v produces a value
h such that O<h<=N. (N is the number of partitions).

Applying that hash function f to each record in the input
dataset and steering those records to the correct parti-
tion according to the value of h.

In the hypothetical analyze application, the AGGRE-
GATE and ANALYZE operations may incorporate a “BY”
clause. Such cases may be parallelized using key-based
partitioning (see parallelization rule 904 in FIG. 8). FIG. 23
is a dataflow diagram showing an example of parallelizing
the AGGREGATE operation. In the serial version 1101, a
serial dataset 1103 might be processed by the AGGREGATE
processing step 1104 containing a BY clause, producing an
output dataset 1105. In the parallel version 1102 of the
AGGREGATE operation, the input dataset 1103 would be
divided into N partitions 1106 by use of a hash function. N
instances of the AGGREGATE operation 1107 would then
be run, each accessing one partition 1106 of the input data.
The results would then be written to N output datasets 1108.
Note that the output datasets 1108 constitute a key-parti-
tioned representation of the output 1105 produced by the
serial version of the program.

In the preferred embodiment, the rewrite rule 902 for the
key-based partitioning strategy marks the “before” process-
ing step 1120 plus its inputs and outputs 1121, 1122 as
“partitioned by key”. This is graphically indicated by the use
of heavy line weight in an “after” dataflow graph symbol
plus a notation as to the key.

3. Access to Partitioned Data Files

The advantages of parallelism are by no means restricted
to computation. In particular, parallelism has the potential to
vastly speed up access to data. For example, if a single
storage device can transfer data at a rate of 5 megabytes/
second, then a collection of 10 such devices might transfer
data at a rate of 50 megabytes/second. For this reason, it is
advantageous to partition data across multiple storage
devices.

FIG. 24 is a block diagram showing one method for
storing a partitioned dataset. This method partitions the
records in the dataset across multiple files, preferably
arranging for each file to be stored on a different disk. The
method can best be understood by comparison with the
method used in serial files. In the serial case 1200, a single
file 1201 is used to store a set of records 1202. This dataset
is referenced by a single filename 1203. In a partitioned



US 7,047,232 Bl

23

dataset 1204, several files 1205 are used, each of which
stores a partition of the dataset 1206. In this case, a series of
filenames 1207 may be used to reference the dataset. This
series may preferably be represented as a single string with
some delimiter character (e.g., a semicolon) used to separate
the individual filenames within the list.

Allowed U.S. patent application Ser. No. 08/876,734,
filed Jun. 16, 1997, entitled A PARALLEL VIRTUAL FILE
SYSTEM, and assigned to the assignee of the present
invention (the teachings and content of which are hereby
incorporated by reference) describes an improved method
for managing sets of files. Under this method 1208, a
“control file” 1209 may be used to store the names 1210 of
the data files 1205 comprising the partitioned dataset 1206.
The partitioned dataset 1206 may then be referenced using
a single filename 1211 which refers to the control file.

Support for partitioned datasets requires an entry 905 in
the parallelization method repertoire table 900 having an
applicability test 901 which examines the filename con-
tained in a dataset to determine whether it refers to a
partitioned dataset. The corresponding rewrite rule 902 sets
the dataset’s partitioning mode, e.g., to “simple” or some
similar notation.

This method is unusual in that it slightly extends the
functionality of the original tool 6, such that the parallel
application can access partitioned data files

4. Parallelization by Local-Global Division

Some processing steps produce output values which are
computed based on the entire contents of the input
datasets(s). For example, in the hypothetical analyze appli-
cation, the AGGREGATE statement (not having a BY
clause) may be called on to find the largest value of some
field, computed across the entire input dataset. In many
cases, it is possible to perform such data-set-wide compu-
tations by partitioning the input data, computing a “local
result” for each partition, and computing the desired “global
result” by combining the several “local results.” In most
cases the amount of non-parallel work done in the “global
combination” step is quite small compared to the parallel
work done in the “local computation” step. Preferably, both
the “local” and “global” steps will be performed by the
original software tool 6. If necessary, however, one or both
steps may be implemented by new, special-purpose code.

This method of parallelism is referred to as “Local-Global
Division.” The exact computation performed for the local
and global stages is dependent on the processing step being
parallelized. For the aggregate operation in the hypothetical
analyze application, the local stage consists of computing a
local aggregate as specified in the original script 1, then
applying the same aggregation operation globally to the
results of local aggregation. FIG. 25 is a dataflow diagram
of local-global parallelization. In the serial operation 1300,
one might start with a serial dataset 1301 and an aggregate
operation 1302 which finds the minimum value of one field
and the maximum value of another 1303. The parallel
version of this operation 1304 would involve dividing the
input into partitions 1305, then applying one instance of the
aggregate operation 1306 to each partition. This will pro-
duce the minimum and maximum values of the two fields
1307 within each partition. These local results will then be
fed into a global aggregation step 1308 to compute the
minimum/maximum across the entire dataset 1309.

In the preferred embodiment, the rewrite rule 902 for
Local-Global Division 906 consists of:

Replacing the original operation 1320 with a local opera-

tion 1323, a temporary intermediate dataset 1324, and
a global operation 1325.

o
o

40

45

24

Adding dataset accesses between the local operation and
the intermediate dataset 1326, and between the inter-
mediate dataset and the global operation 1327.

Graphically marking the local operation 1323 and inter-
mediate dataset 1324 as “partitioned” using heavy line
weight.

Marking the global operation 1325 as serial using light
line weight.

Graphically marking access references 1326, 1327 to the
intermediate dataset as partitioned using heavy line
weight.

Attaching the inputs 1321 of the original operation 1320
to the local stage 1323 and graphically marking them as
partitioned 1328 using heavy line weight.

Attaching the outputs 1322 of the original operation 1320
to the global stage 1325 and graphically marking them
as serial 1329 using light line weight.

5. External Parallelism—Supplemental Programs

There may be cases where the original software tool 6
cannot be used to parallelize some processing step. In such
cases it may be possible to introduce an “External Parallel”
implementation of the step. An External Parallel implemen-
tation is a supplemental program which replicates some of
the functionality in the original application in a way which
allows the function to be parallelized. The implementation
of such an External Parallelization routine depends on the
nature of the operation being parallelized. This section
describes the general method by which such external rou-
tines are integrated into the parallel version of an applica-
tion.

For example, the hypothetical analyze application
includes a “database unload” operation which cannot be
parallelized by, for example, partitioning the database table
being unloaded (doing so would require unacceptable modi-
fications to the database table). This might, however, be
parallelized by providing an “external parallel database
unload” program. FIG. 26 is a dataflow diagram showing an
example of External Parallelism. The original serial appli-
cation 1400 might call for a database table 1401 to be
accessed using its own “intrinsic unload” routine 1402,
allowing the routine 1402 to access a set of data records
1403. A parallel implementation 1404 would take the same
database table 1401 and use several instances of an “external
unload” program 1405 to jointly scan the database table,
such that each program produces a partition 1406 of the
original table.

In the preferred embodiment, the rewrite rule 902 for
External Parallelization 907, 908 consists of:

Replacing the original operation 1420 with an external

parallel routine 1423.

In most cases, graphically marking the external parallel
routine 1423 for partitioned execution using heavy line
weight.

In most cases, graphically marking the inputs 1421 and
outputs 1422 and corresponding partitioned data access
references 1424, 1425 using heavy line weight.

6. Parallelization by Statement Decomposition

There may be cases where the original software tool 6
cannot be used to parallelize some processing step and it is
not desirable or possible to use External Parallelism to
parallelize the step. In such cases it may be possible to
parallelize the processing step through Statement Decom-
position. Statement Decomposition can be used when a
processing step performs multiple independent tasks. When
this is the case, a processing step can be parallelized by
decomposing the original tasks of the step into separate tasks
each of which then is processed in a separate step. Each of



US 7,047,232 Bl

25

these new steps can then be processed simultaneously,
effectively achieving parallel execution of the original step.
The results of the decomposed steps are then concatenated
together to form a serial output.

FIG. 27 is a dataflow diagram showing an example of
Statement Decomposition. In the preferred embodiment, the
rewrite rule 902 for parallelization by Statement Decompo-
sition consists of:

Replacing the original operation 1702 with the combina-
tion of a decomposed operation 1704, a temporary
intermediate dataset 1705, and a field concatenation
operation 1706. The field concatenation operation 1706
concatenates the fields of the records in the temporary
intermediate dataset 1705.

Adding dataset accesses 1707, 1708 between the decom-
posed operation and the intermediate dataset, and
between the intermediate dataset and the concatenation
operation, respectively.

Graphically marking the decomposed operation 1704 and
the intermediate dataset 1705 as “partitioned” using
heavy line weight.

Marking the concatenation operation 1706 as serial using
light line weight.

Graphically marking accesses 1707, 1708 to the interme-
diate dataset as partitioned using heavy line weight.

Attaching the inputs 1701 of the original operation 1702
to the decomposed operation 1704 and graphically
marking them as partitioned 1709 using heavy line
weight.

Attaching the outputs 1703 of the original operation 1702
to the concatenation operation 1706 and marked them
as serial 1710 using light line weight.

REWRITE RULES PARTICULAR TO SAS

While the invention has general applicability to a variety
of scripting languages, the following provides some
examples of how the invention may be adapted to the SAS
language in particular. One of ordinary skill in the art should
be able to apply the principles and examples herein to adapt
other aspects of SAS for use with the present invention.

1. PROC MEANS Rewrite Rule—Example of a Local-
Global Division

The SAS System includes a MEANS procedure which
cannot always be parallelized by, for example, Simple or
Key-based partitioning. However, the MEANS procedure
generally can be parallelized by applying a Local-Global
Division rewrite rule. FIG. 28 is a dataflow diagram showing
an example of a serial SAS script that uses the MEANS
procedure 1505 to calculate descriptive statistics on a dataset
1501 and produce an output file 1502. A parallel implemen-
tation would take the same dataset 1501, use simple parti-
tioning to produce a partitioned dataset 1504, and then use
several instances of the SAS MEANS procedure 1505 to
produce local values for the minimum, maximum, count,
sum, and sum of squares values for the dataset 1506. A
single instance of an external statistics merging application
1507 combines the local values to produce the global result
1502. The algorithms necessary to merge the local values
1506 and produce the global result 1502 are well known in
the art.

2. PROC FREQ Rewrite Rule—Example of Local-Global
Division

The SAS System includes a FREQ (frequency) procedure
which cannot always be parallelized by, for example, Simple
or Key-based partitioning. However, the FREQ procedure
generally can be parallelized by applying a Local-Global

5

35

40

45

26

Division rewrite rule. FIG. 29 is a dataflow diagram showing
an example of a serial SAS script that uses the FREQ
procedure 1605 to calculate table driven statistics on a
dataset 1601 and produce an output file 1602. A parallel
implementation would take the same dataset 1601, use
simple partitioning to produce a partitioned dataset 1604,
and then use several instances of the SAS FREQ procedure
1605 to produce local frequency tables for the dataset 1606.
A single instance the FREQ procedure 1607 combines the
local values to produce the global result 1602. (In order to
comply with the language requirements of the current
embodiment of SAS, the single FREQ instance 1607 must
contain the SAS statement “WEIGHT COUNT” in order to
properly merge the local results 1606.)
3. PROC UNIVARIATE Rewrite Rule—Example of
Statement Decomposition
The SAS System includes the UNIVARIATE procedure
which cannot be parallelized by, for example, Simple or
Key-based partitioning. The UNIVARIATE procedure gen-
erally can be parallelized by applying a Statement Decom-
position rewrite rule. FIG. 30 is a dataflow diagram showing
an example of a serial SAS script that uses the UNIVARI-
ATE procedure 1805 to calculate univariate statistics on a
dataset 1801 and produce an output file 1802. A parallel
implementation would take the same dataset 1801, use
column partitioning to produce a partitioned dataset 1804,
and then use several instances of the SAS UNIVARIATE
procedure 1805, each producing univariate statistics for each
variable (column partition) and creating a local dataset 1806.
A single concatenation step 1807 then combines the local
univariate datasets 1806 to produce the global result 1802.
4. Datasteps Rewrite Rule—Example of Simple Partition-
ing or Key-Based Partitioning
The SAS System includes a procedural step called a
“datastep”. In general, SAS programs are composed of a
series of datasteps and SAS procedures. SAS datasteps can
perform single or grouped record operations analogous to
the AGGREGATE statement in the script language of the
hypothetical analyze application. When a SAS datastep uses
SAS datasets for input and output and does not contain a BY
statement, Simple Partitioning may be used to compute the
datastep in parallel. When a SAS datastep uses SAS datasets
for input and output and does contain a BY statement,
parallelization by Key-Based Partitioning may be used to
compute the datastep in parallel. In this latter case, the key
specified in the SAS BY statement is used as the key in the
hash partition operation.
5. SAS Script Fragments
Following This is an example of a SAS program and the
fragments it would be broken into. Note that these fragments
need to be modified to fit within the structure of the
particular rewrite rule that is being applied. Additionally,
references to temporary datasets (anywhere ‘one’ appears
below, i.e., a dataset name that does not have a prefix from
a libname statement) need to be replaced with the appropri-
ate reference to the serial or parallel dataset created by the
rewrite rule.
libname ext
data one;
set ext.customer;
by region;
age=today ( )-birthdt;
proc means data=one;
var age;
proc freq data=one;
tables age*region;
proc univariate data=one;

w9,
L)



US 7,047,232 Bl

27

var age income numkids;
Fragment 1:
libname ext
data parallel.one;
set ext.customer;
by region;
age=today ( )-birthdt;

Fragment 2:

proc means data=parallel.one;

var age;

Fragment 3:

proc freq data=one;

tables age*region;
Fragment 4:
proc univariate data=one;
var age income numkids;

6. Macros and Preprocessors

The SAS language allows users to create and use “mac-
ros” (collections of commands) for convenience. However,
macros “hide” the underlying SAS commands. In order to
more easily apply practical embodiments of the invention to
a SAS script, all macros should be expanded to expose the
original underlying commands. Since current embodiments
of the SAS system do not provide tools specifically for
macro expansion, alternative methods may be used. For
example, in one embodiment, the expanded form of macros
may be obtained by executing an original SAS program in
a syntax checking mode. Current embodiments of SAS
generate a log file from this activity that in essence contains
all of the underlying SAS commands in expanded form. By
reading and parsing the log file, a version of the “raw” SAS
code can be obtained and processed through the analyzer 2
of the present invention. (Note that the log file is not legal
SAS code per se and must be mapped or interpreted to legal
commands, a straightforward process).

An alternative method for obtaining the expanded form of
macros would be to write a macro preprocessor for the SAS
macro language. Such preprocessors and methods for writ-
ing them are well-known in the art.

7. Global SAS Data

The SAS system creates and references global data in two
major areas: macro variables and formats. In both cases,
creation and reference to such global data can be detected by
examination of the SAS parse tree. For example, referring to
FIGS. 6 and 7, creation of global data by a SAS step can be
detected while statements are being scanned 501. Any such
references causes a global data entry to be created in the
dataset table 601. In addition, reference to global data by a
SAS step is found and noted when the dataset access table
603 is being created in Step 505. In this manner, any macro
variables or SAS formats which are created will be provided
to later SAS steps which require them.

<9,
L)

COMPUTER EMBODIMENTS

The invention may be implemented in hardware or soft-
ware, or a combination of both. Unless otherwise specified,
the algorithms included as part of the invention are not
inherently related to any particular computer or other appa-
ratus. In particular, various general purpose machines may
be used with programs written in accordance with the
teachings herein, or it may be more convenient to construct
more specialized apparatus to perform the required method
steps. However, preferably, the invention is implemented in
one or more computer programs executing on programmable
systems each comprising at least one processor, at least one
data storage system (including volatile and non-volatile

10

15

o
<

35

40

45

28

memory and/or storage elements), at least one input device,
and at least one output device. Program code is applied to
input data to perform the functions described herein and
generate output information. The output information is
applied to one or more output devices, in known fashion.

Each such program may be implemented in any desired
computer language (including machine, assembly, high level
procedural, or object oriented programming languages) to
communicate with a computer system. In any case, the
language may be a compiled or interpreted language.

Each such computer program is preferably stored on a
storage media or device (e.g., ROM, CD-ROM, or magnetic
or optical media) readable by a general or special purpose
programmable computer, for configuring and operating the
computer when the storage media or device is read by the
computer to perform the procedures described herein. The
inventive system may also be considered to be implemented
as a computer-readable storage medium, configured with a
computer program, where the storage medium so configured
causes a computer to operate in a specific and predefined
manner to perform the functions described herein.

A number of embodiments of the present invention have
been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the invention. For example, steps may
be performed in different sequences and still achieve the
same result. Accordingly, other embodiments are within the
scope of the following claims.

What is claimed is:

1. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(a) parsing the script into statements comprising at least

processing steps and dataset definitions;

(b) constructing a serial dataflow graph from the parsed
statements, the serial dataflow graph having nodes
connected by directed edges, the nodes representing
datasets, processing steps, and intermediate results; and

(c) constructing a parallel dataflow graph from the nodes
of the serial dataflow graph such that the parallel
dataflow graph may be executed by a parallel runtime
system.

2. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification plus a script fragment
set based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements comprising at least

processing steps and dataset definitions;

(b) constructing a serial dataflow graph from the parsed
statements, the serial dataflow graph having nodes
connected by directed edges, the nodes representing
datasets, processing steps, and intermediate results;

(c) constructing a parallel dataflow graph from the nodes
of the serial dataflow graph such that the parallel
dataflow graph may be executed by a parallel runtime
system; and

(d) analyzing the parallel dataflow graph to generate script
fragments in a form that enables the script-driven
software tool to execute some of the processing steps.



US 7,047,232 Bl

29

3. The method of claims 1 or 2, wherein constructing the
serial dataflow graph includes:

(a) constructing a serial dataset table of datasets used by

the script;

(b) constructing a serial processing step table of state-
ments performed by the script; and

(c) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table.

4. The method of claim 3, wherein constructing the

parallel dataflow graph includes:

(a) constructing a parallel dataset table of datasets based
on the serial dataset table;

(b) constructing a parallel processing step table of state-
ments based on the serial processing step table;

(¢) constructing a dataset access table based on the serial
dataset access table; and

(d) determining, for each processing step identified in the
parallel processing step table, if a corresponding pre-
defined parallelization rewrite rule exists for such pro-
cessing step, and if so, then applying the corresponding
pre-defined parallelization rewrite rule to redefine asso-
ciated entries in the parallel dataset table, the parallel
processing step table, and the dataset access table as
parallel processing entries; and if not, then defining
such associated entries as serial processing entries.

5. The method of claim 4, further including resolving any
existing partitioning conflicts in the constructed parallel
dataflow graph.

6. The method of claim 4, wherein at least one pre-defined
parallelization rewrite rule is an algorithm selected from the
group comprising simple partitioning, key-based partition-
ing, local-global division, external parallelism algorithm,
and statement decomposition.

7. The method of claims 1 or 2, wherein the script-driven
software tool is SAS®.

8. The method of claims 1 or 2, wherein producing the
parallel computation specification includes applying at least
one pre-defined parallelization rewrite algorithm selected
from the group comprising simple partitioning, key-based
partitioning, local-global division, external parallelism algo-
rithm, and statement decomposition.

9. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a
parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(a) parsing the script into statements comprising at least

processing steps and dataset definitions;

(b) constructing a serial dataflow graph from the parsed
statements, the serial dataflow graph having nodes
connected by directed edges, the nodes representing
datasets, processing steps, and intermediate results; and

(c) constructing a parallel dataflow graph from the nodes
of the serial dataflow graph such that the parallel
dataflow graph may be executed by a parallel runtime
system.

10. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a
parallel computation specification plus a script fragment set

5

10

20

30

35

40

45

50

55

60

65

30

based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements comprising at least
processing steps and dataset definitions;

(b) constructing a serial dataflow graph from the parsed
statements, the serial dataflow graph having nodes
connected by directed edges, the nodes representing
datasets, processing steps, and intermediate results;

(c) constructing a parallel dataflow graph from the nodes
of the serial dataflow graph such that the parallel
dataflow graph may be executed by a parallel runtime
system; and

(d) analyzing the parallel dataflow graph to generate script
fragments in a form that enables the script-driven
software tool to execute some of the processing steps.

11. The computer program of claims 9 or 10, wherein
constructing the serial dataflow graph includes:

(a) constructing a serial dataset table of datasets used by

the script;

(b) constructing a serial processing step table of state-
ments performed by the script; and

(c) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table.

12. The computer program of claim 11, wherein con-

structing the parallel dataflow graph includes:

(a) constructing a parallel dataset table of datasets based
on the serial dataset table;

(b) constructing a parallel processing step table of state-
ments based on the serial processing step table;

(c) constructing a dataset access table based on the serial
dataset access table; and

(d) determining, for each processing step identified in the
parallel processing step table, if a corresponding pre-
defined parallelization rewrite rule exists for such pro-
cessing step, and if so, then applying the corresponding
pre-defined parallelization rewrite rule to redefine asso-
ciated entries in the parallel dataset table, the parallel
processing step table, and the dataset access table as
parallel processing entries; and if not, then defining
such associated entries as serial processing entries.

13. The computer program of claim 12, further including
resolving any existing partitioning conflicts in the con-
structed parallel dataflow graph.

14. The computer program of claim 12, wherein at least
one pre-defined parallelization rewrite rule is an algorithm
selected from the group comprising simple partitioning,
key-based partitioning, local-global division, external par-
allelism algorithm, and statement decomposition.

15. The computer program of claims 9 or 10, wherein the
script-driven software tool is SAS®.

16. The computer program of claims 9 or 10, wherein
producing the parallel computation specification includes
applying at least one pre-defined parallelization rewrite
algorithm selected from the group comprising simple parti-
tioning, key-based partitioning, local-global division, exter-
nal parallelism algorithm, and statement decomposition.

17. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
and for automatically analyzing the script and producing a
parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, including:



US 7,047,232 Bl

31

(a) means for parsing the script into statements compris-
ing at least processing steps and dataset definitions;

(b) means for constructing a serial dataflow graph from
the parsed statements, the serial dataflow graph having
nodes connected by directed edges, the nodes repre-
senting datasets, processing steps, and intermediate
results; and

(c) means for constructing a parallel dataflow graph from
the nodes of the serial dataflow graph such that the
parallel dataflow graph may be executed by a parallel
runtime system.

18. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
and for automatically analyzing the script and producing a
parallel computation specification plus a script fragment set
based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, including;

(a) means for parsing the script into statements compris-

ing at least processing steps and dataset definitions;

(b) means for constructing a serial dataflow graph from
the parsed statements, the serial dataflow graph having
nodes connected by directed edges, the nodes repre-
senting datasets, processing steps, and intermediate
results;

(c) means for constructing a parallel dataflow graph from
the nodes of the serial dataflow graph such that the
parallel dataflow graph may be executed by a parallel
runtime system; and

(d) means for analyzing the parallel dataflow graph to
generate script fragments in a form that enables the
script-driven software tool to execute some of the
processing steps.

19. The system of claims 17 or 18, wherein the means for

constructing the serial dataflow graph includes means for:

(a) constructing a serial dataset table of datasets used by
the script;

(b) constructing a serial processing step table of state-
ments performed by the script; and

(c) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table.

20. The system of claim 19, wherein the means for

constructing the parallel dataflow graph includes means for:

(a) constructing a parallel dataset table of datasets based
on the serial dataset table;

(b) constructing a parallel processing step table of state-
ments based on the serial processing step table;

(c) constructing a dataset access table based on the serial
dataset access table; and

(d) determining, for each processing step identified in the
parallel processing step table, if a corresponding pre-
defined parallelization rewrite rule exists for such pro-
cessing step, and if so, then applying the corresponding
pre-defined parallelization rewrite rule to redefine asso-
ciated entries in the parallel dataset table, the parallel
processing step table, and the dataset access table as
parallel processing entries; and if not, then defining
such associated entries as serial processing entries.

21. The system of claim 20, further including means for
resolving any existing partitioning conflicts in the con-
structed parallel dataflow graph.

22. The system of claim 20, wherein at least one pre-
defined parallelization rewrite rule is an algorithm selected
from the group comprising simple partitioning, key-based

10

15

30

35

40

45

50

55

60

65

32

partitioning, local-global division, external parallelism algo-
rithm, and statement decomposition.

23. The system of claims 17 or 18, wherein the script-
driven software tool is SAS®.

24. The system of claims 17 or 18, wherein the means for
producing the parallel computation specification includes
means for applying at least one pre-defined parallelization
rewrite algorithm selected from the group comprising simple
partitioning, key-based partitioning, local-global division,
external parallelism algorithm, and statement decomposi-
tion.

25. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(i) constructing a serial dataset table of datasets used by
the script,

(i1) constructing a serial processing step table of state-
ments performed by the script, and

(iii) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table; and

(c) constructing a parallel dataflow graph from the serial

dataflow graph.

26. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification plus a script fragment
set based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(i) constructing a serial dataset table of datasets used by
the script;

(i1) constructing a serial processing step table of state-
ments performed by the script; and

(iii) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table; and

(c) constructing a parallel dataflow graph from the serial

dataflow graph.

27. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(ii) constructing a parallel processing step table of
statements based on the serial processing step table;

(iil) constructing a dataset access table based on the
serial dataset access table; and



US 7,047,232 Bl

33

(iv) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
daraset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(¢) constructing a parallel dataflow graph from the serial

dataflow graph.

28. A method for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising automatically analyzing the script and producing
a parallel computation specification plus a script fragment
set based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said instructing including

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(ii) constructing a parallel processing step table of
statements based on the serial processing step table;

(i11) constructing a dataset access table based on the
serial dataset access table; and

(iv) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
daraset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(¢) constructing a parallel dataflow graph from the serial

dataflow graph.

29. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a
parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(1) constructing a serial dataset table of datasets used by
the script;

(ii) constructing a serial processing step table of state-
ments performed by the script; and

(1) constructing a serial dataset access table indicating
darasets in the dataset table used by statements in the
processing step table; and

(c) constructing a parallel dataflow graph from the serial

dataflow graph.

30. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a

10

35

40

45

50

55

60

65

34

parallel computation specification plus a script fragment set
based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(1) constructing a serial dataset table of datasets used by
the script;

(ii) constructing a serial processing step table of state-
ments performed by the script; and

(ii1) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table; and

(c) constructing a parallel dataflow graph from the serial

dataflow graph.

31. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a
parallel computation specification based on such analysis,
where such parallel computation specification provides
functional equivalence to the script when executed by a
parallel runtime system, by:

(@) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(i1) constructing a parallel processing step table of
statements based on the serial processing step table;

(iii) constructing a dataset access table based on the
serial dataset access table; and

(iv) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
dataset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(c) constructing a parallel dataflow graph from the serial

dataflow graph.

32. A computer program, residing on a computer-readable
medium, for parallelizing a computer application program
based on a script of a script-driven software tool, the
computer program comprising instructions for causing a
computer to automatically analyze the script and produce a
parallel computation specification plus a script fragment set
based on such analysis, where such parallel computation
specification and script fragment set provides functional
equivalence to the script when executed by a parallel runt-
ime system, by:

(a) parsing the script into statements;

(b) constructing a serial dataflow graph from the parsed

statements, said constructing including

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(ii) constructing a parallel processing step table of
statements based on the serial processing step table;

(iil) constructing a dataset access table based on the
serial dataset access table; and



US 7,047,232 Bl

35

(iv) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
daraset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(¢) constructing a parallel dataflow graph from the serial

dataflow graph.

33. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising means and for automatically analyzing the script
and means for producing a parallel computation specifica-
tion based on such analysis, where such parallel computa-
tion specification provides functional equivalence to the
script when executed by a parallel runtime system, includ-
ing:

(a) means for parsing the script into statements;

(b) means for constructing a serial dataflow graph from

the parsed statements, said means including means for

(1) constructing a serial dataset table of datasets used by
the script;

(ii) constructing a serial processing step table of state-
ments performed by the script; and

(i11) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table; and

(¢) means for constructing a parallel dataflow graph from

the serial dataflow graph.

34. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising means and for automatically analyzing the script
and means for producing a parallel computation specifica-
tion plus a script fragment set based on such analysis, where
such parallel computation specification and script fragment
set provides functional equivalence to the script when
executed by a parallel runtime system, including:

(a) means for parsing the script into statements;

(b) means for constructing a serial dataflow graph from

the parsed statements, said means including means for

(1) constructing a serial dataset table of datasets used by
the script;

(ii) constructing a serial processing step table of state-
ments performed by the script; and

(i1) constructing a serial dataset access table indicating
datasets in the dataset table used by statements in the
processing step table; and

(c) means for constructing a parallel dataflow graph from

the serial dataflow graph.

35. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising means and for automatically analyzing the script
and means for producing a parallel computation specifica-

5

10

15

o

5

30

35

40

45

50

55

36

tion based on such analysis, where such parallel computa-
tion specification provides functional equivalence to the
script when executed by a parallel runtime system, includ-
ing:

(a) means for parsing the script into statements;

(b) means for constructing a serial dataflow graph from

the parsed statements, said means including means for

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(i) constructing a parallel processing step table of
statements based on the serial processing step table;

(iii) constructing a dataset access table based on the
serial dataset access table; and

(1v) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
dataset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(c) means for constructing a parallel dataflow graph from

the serial dataflow graph.

36. A system for parallelizing a computer application
program based on a script of a script-driven software tool,
comprising means and for automatically analyzing the script
and means for producing a parallel computation specifica-
tion plus a script fragment set based on such analysis, where
such parallel computation specification and script fragment
set provides functional equivalence to the script when
executed by a parallel runtime system, including:

(a) means for parsing the script into statements;

(b) means for constructing a serial dataflow graph from

the parsed statements, said means including means for

(1) constructing a parallel dataset table of datasets based
on the serial dataset table;

(i) constructing a parallel processing step table of
statements based on the serial processing step table;

(iii) constructing a dataset access table based on the
serial dataset access table; and

(1v) determining, for each processing step identified in
the parallel processing step table, if a corresponding
pre-defined parallelization rewrite rule exists for
such processing step, and if so, then applying the
corresponding pre-defined parallelization rewrite
rule to redefine associated entries in the parallel
dataset table, the parallel processing step table, and
the dataset access table as parallel processing entries;
and if not, then defining such associated entries as
serial processing entries; and

(c) means for constructing a parallel dataflow graph from

the serial dataflow graph.

# ok %k F



