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STARTUP AND CONTROL OF
GRAPH-BASED COMPUTATION

BACKGROUND

This invention relates to execution of graph-based com-
putations.

Complex computations can often be expressed as a data
flow through a directed graph, with components of the
computation being associated with the vertices of the graph
and data flows between the components corresponding to
links (arcs, edges) of the graph. A system that implements
such graph-based computations is described in U.S. Pat. No.
5,966,072, EXECUTING COMPUTATIONS EXPRESSED AS
GRAPHS. One approach to executing a graph-based compu-
tation is to execute a number of processes, each associated
with a different vertex of the graph, and to establish com-
munication paths between the processes according to the
links of the graph. For example, the communication paths
can use TCP/IP or UNIX domain sockets, or use shared
memory to pass data between the processes.

SUMMARY

In a general aspect of the invention, a method for efficient
startup of a graph-based computation involves precomput-
ing data representing a runtime structure of a computation
graph such that an instance of the computation graph is
formed using the precomputed data for the required type of
graph to form the runtime data structure for the instance of
the computation graph.

In another general aspect of the invention, a method for
efficient control of graph-based computation involves form-
ing pools of processes that are each suitable for performing
computations associated with one or more vertices of the
computation graphs. At runtime, members of these pools of
processes are dynamically assigned to particular vertices of
instances of computation graphs when inputs are available
for processing at those vertices.

Another general aspect of the invention involves a com-
bination of the efficient startup and process pool aspects.

In one aspect, in general, the invention features a method
for processing graph-based computations. One or more
graph templates are provided. Each graph template is asso-
ciated with a different type of computation graph and each
computation graph includes a number of graph elements.
Each graph element is associated with a corresponding
computation. One or more pools of computing resources are
formed. Each graph element of a computation graph is
associated with a corresponding one of the pools of com-
puting resources. One or more data streams are processed.
Each of the data streams is associated with a corresponding
type of computation graph. For each of the data streams,
processing of the data stream includes forming a graph
instance from a graph template for the corresponding com-
putation graph. For each of the graph elements of the graph
instance, computer resources from corresponding pools are
assigned to the graph elements. Each data stream is pro-
cessed with a graph instance, including performing the
computations corresponding to the graph elements of such
graph instance using the assigned computing resource.

Aspects of the invention include one or more of the
following features:

The graph elements can include vertices or links of the
computation graph.

The computation resources can include processes, pro-
cesses threads, or database connections.
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Providing the one or more graph templates can include
storing the templates in volatile memory or in non-volatile
memory.

The graph instance can be formed from the graph tem-
plate in volatile memory.

Forming the graph instance can includes allocating a
portion of the memory to the graph instance and copying the
graph template to that portion of the memory.

Computing resources can be assigned dynamically for
part of the computation on the data stream.

Computing resources can be assigned when at least some
part of all of the inputs for such part of the computation are
available.

Computing resources can be assigned when all of the
inputs for such part of the computation are available.

Assigning each of the computing resources dynamically
can include deassigning the computation resource from the
graph element.

Each of the computing resources for a graph element can
be assigned for processing all of the data stream.

The method can further include releasing the computing
resources assigned to graph elements and destroying the
instance of the graph.

At least two data streams each associated with a different
computation graph can be processed concurrently.

At least one graph eclement of instances of each of
different computation graphs can be associated with a same
corresponding pool of computation resources.

At least one computing resource of a same corresponding
pool of computation resources can be assigned at different
times to a graph element of instances of different computa-
tion graphs.

In another aspect, in general, the invention features
software, stored on a computer-readable medium, for pro-
cessing graph-based computations.

In another aspect, in general, the invention features a
system for processing graph-based computations.

Aspects of the invention can include one or more of the
following advantages:

The computational overhead associated with creating
instances of computation graphs is reduced as compared to
establishing separate communication paths between vertices
at the time the graphs are instantiated.

In one embodiment, use of shared memory provides an
efficient communication channel for passing data between
processes implementing computations for the vertices of the
computation graph.

Process pools reduce the overhead associated with creat-
ing and initializing processes for performing the computa-
tions associated with vertices of a computation graph.

Use of a dynamically assigned pools of processes reduces
the resources that might otherwise be used by processes
waiting for input.

Other features and advantages of the invention are appar-
ent from the following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram that illustrates an instance of graph-
based computation.

FIG. 2 is a logical block diagram of a system for pro-
cessing work flows.

FIG. 3 is one embodiment of a data structure for a graph
instance.
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FIG. 4 is a data structure for the computation graph shown
in FIG. 1.

FIG. 5 is a flowchart for system initialization.

FIG. 6 is a flowchart for processing each work flow.

FIG. 7 is a flowchart for execution of an instance of a
computation graph.

FIG. 8 is a flowchart for completion of processing for a
vertex.

DESCRIPTION
1. Overview

The system described below implements a method for
executing computations that are defined in terms of com-
putation graphs. Referring to FIG. 1, an example of a
computation graph 100 includes a number of vertices 110
that are joined by unidirectional links 120. In the example
shown in FIG. 1, vertices 110 are numbered from 1 to 6, and
links 120 are also numbered from 1 to 6. Computation graph
100 processes a work flow that is made up of a series of work
elements 130, such as individual transactions that are pro-
cessed according to a computation graph associated with a
transaction processing system. Fach vertex is associated
with a portion of the computation defined by the overall
computation graph. In this example, vertex 1 provides
access to storage for an initial series of work elements 130,
and passes that series on its output link 1. Processes that
implement the computation associated with each of the
vertices process the work elements 130 in turn, and typically
produce a work element on one or more of the output links
of that vertex.

As illustrated in FIG. 1, a work element 130 is in transit
on link 1, a work element is queued ready for processing at
vertex 3, and two work elements are queued for processing
at vertex 4. Therefore, the processes for vertex 3 and vertex
4 are ready to run to process a queued work element. As
illustrated, vertex 5 has a work element queued on one of its
inputs, link 4, but not on the other input, link 5. Therefore
the process associated with vertex 5 is not ready to run.

Referring to FIG. 2, a system 200 for processing work
flows includes stored graph data structures 210. These data
structures include specifications of computation graphs that
include characteristics of the vertices and links of the graphs.
A graph execution and control (“GEC”) module 220 of the
system receives control inputs 222 including commands to
process particular work flows 232 using corresponding
computation graphs, which are specified in the stored graph
data structures 210. The GEC module 220 uses the specifi-
cations of the computation graphs to control graph compu-
tation processing 230, which is generally made up of mul-
tiple processes. The processes that implement graph
computation processing 230 can make use of external data
and processes 240, which include database engines, data
storage, or other modules that are accessed during process-
ing associated with vertices of the computation graphs.

In general, different types of work flows are processed
using different types of computation graphs 100, and differ-
ent work flows may be processed concurrently, each being
processed by a different instance of a graph. System 200,
through the GEC module 220, allocates resources for the
instances of computation graphs and controls their execution
to process the work flows.

2. Graph Data Structures

System 200 includes a number of features that provide
rapid startup of graph computations as well as efficient
sharing of limited resources.

Before processing a work flow with an instance of a
computation graph, the GEC module 220 creates a runtime
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data structure for that graph instance in a functionally shared
memory. In one embodiment, a single shared memory
segment is created in which all the runtime data structures
for graph instances are created.

Processes are associated at runtime with the vertices of
the graph and each of these processes maps the shared
memory segment into their address space. The processes
read and write work elements from and to the runtime data
structures for the graph instances during processing of the
work flows. That is, data for the work elements that flow
through the graph are passed from process to process
through this runtime data structures in the shared memory
segment.

Graph computation processing 230 may be hosted on a
general-purpose computer under the control of a suitable
operating system, such as the UNIX operating system. The
shared memory for an instance of the graph preferably is
accessible using standard system services (e.g., the mmap(
) UNIX system service) that provide memory mapping
functions to mapped the shared memory segment holding
the runtime graph data structures into the address spaces of
the processes implementing the computation graph.

FIG. 3 is one embodiment of a runtime graph data
structure 300 for an instance of a computation graph. A
header section 320 includes the number of vertices 322 and
the number of links 324 of the graph. Runtime graph data
structure 300 also includes a vertex section 330 that specifies
the vertices of the graph in a series of records 332, each
associated with a different vertex. The runtime structure also
includes a link section 340, which includes link records 342
each specifying a different lint, of the graph. Runtime graph
data structure 300 also includes a buffer section 350, which
holds work element data as the work elements are passed
between vertices of the computation graph and queued prior
to processing at a vertex.

In vertex section 330, each vertex record 332 typically
includes data that identifies the input links 334 for the
corresponding vertex and the output links 335 for the vertex.
For example, the links and the vertices may be numbered
consecutively from 1, and the input and output link data for
a vertex may be represented as a list of indices including
those links.

In this example, each vertex record 332 also includes
storage for an input count 336 that indicates the number of
inputs that do not have a work element queued and waiting
for processing. During execution of the graph, this variable
is initialized to the number of input links for the vertex, is
decremented as input becomes available on each input for a
vertex, incremented when an input queue is empties, and
reaches zero when there is an input available on each input
and the process for that vertex is ready to run.

In this example, each vertex record 332 also includes a
process pool identification 337 that specifies a pool of
processes associated with that vertex (a further discussion of
process pools is included later in this description). Processes
in the identified pool are used to perform the processing for
that vertex. In general, the processing for a vertex can be
performed by any member of the identified pool. Processes
are dynamically allocated for each work element and there-
fore different work elements that are processed by the same
vertex in an instance of a computation graph may be
processed by different members of the identified pool.
Vertex record 332 optionally includes configuration data 338
that is used to tailor any member process of the identified
pool to perform the particular processing for that vertex.

Link section 340 of runtime graph data structure 300
specifies the links of the graph in link records 342. Each link
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record 342 may include data that identifies the source vertex
346 for that link and the destination vertex 347 for the links.
Each link record optionally includes configuration data 345
that is used when the runtime data structure is created.

Buffer section 350 of runtime graph data structure 300
includes a number of separate buffer areas 352 associated
with the links of the graph. Each link record 342 typically
includes a buffer location 344 that identifies a corresponding
buffer area 352 for that link record. Each buffer area typi-
cally includes a FIFO queue 360 that holds a number of
work elements 362 that have not yet been processed by the
destination vertex of the corresponding link.

Referring to FIG. 4, a runtime graph data structure 300 for
the example of a computation graph 100 shown in FIG. 1
indicates that there are 6 vertices and 6 links in the header.
Vertex section 340 has six vertex records 332. For example,
the vertex record 332 for vertex 1 indicates in entry 334 that
there are no input links and in entry 335 that link 1 is an
output link. The vertex record 332 for vertex 2 indicates that
link 1 is an input link and that links 2 and 3 are output links.
As illustrated in FIG. 1, a work element for vertex 2 is not
queued ready for processing, and therefore the input count
336 of the vertex record indicates that there is still one
unsatisfied input.

Link section 350 includes six link records 340, one for
each of'the links of the computation graph. For example, the
link record 342 for link I has an entry 346 that indicates that
the source vertex is vertex 1 and an entry 347 that indicates
that the destination vertex is entry 2. An entry 344 of link
record 342 provides a way of accessing the corresponding
buffer record 352 of buffer section 350 (for example, accord-
ing to a byte offset in the graph data structure). Each buffer
record 352 includes a FIFO queue 360. Each FIFO queue
360 can hold data for a number of work elements 362. In
correspondence with the example shown in FIG. 1, FIFO
queues 360 for links 2 and 4 hold one work element, FIFO
queue 360 for link 3 holds two work elements, and the
remaining queues are empty.

Referring back to FIG. 3, one portion of runtime graph
data structure 300 is a template 310 that is common to all
instances of the same type of graph. With the exception of
input count 336 of each vertex record 332, the template
portion of the runtime data structure is static. Input counts
336 for the vertices are initialized to a common value for all
instances of the same type of graph: the number of inputs for
the corresponding vertex, indicating that none of the inputs
for the vertex are initially satisfied.

The template 310 for each type of computation graph is
precomputed before runtime data structures for instances of
that type of graph are needed. Creating a runtime instance
then essentially involves allocating memory for the entire
runtime data structure 300 and copying the appropriate
template 310 into the allocated memory (depending on the
structure of FIFO queues 360, some minimal initialization of
buffer section 350 may be required).

3. Process Pools

As introduced above, computation for vertices is imple-
mented using process pools. For each of a number of
different types of vertex computation, a pool of processes is
created prior to beginning processing of work flows using
computation graphs requiring that type of computation.
During processing of a work flow by a graph instance, when
computation of a particular type is needed to perform the
computation for a vertex of the graph, a member of the
process pool is dynamically associated with that vertex and
remains associated with that vertex for the duration of
processing of the work flow. There are generally many
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different pools of processes, each associated with a corre-
sponding type of processing. Processes in one pool may be
used for vertices in different graphs types, in different
instances of one graph type, and for multiple different
vertices in one graph type.

Each process in a process pool is a separate process (e.g.,
a Unix process) that is invoked by the GEC module 220,
which manages the process pools. The GEC module 220
maintains a separate work queue for each process pool. Each
entry in a work queue identifies a specific vertex of a graph
instance for which the process is to perform computation.

In the illustrated embodiment, when a process in a pool is
first created, it performs an initialization procedure which
includes mapping the shared memory segment for the graph
instances into the address space of the process. After the
initialization procedure completes, the process waits until it
is signaled by the GEC module 220 to perform the process-
ing associated with an element in the work queue for that
pool. A number of alternative mechanisms can be used to
signal the process. In one version of the system, the GEC
module 220 maintains a separate control channel for passing
control information between it and each process in the pool.
Each pool process “blocks” while waiting for input from the
control process to indicate that the pool process should
execute.

Some process pools are made up of processes that reserve
or consume fixed resources. An example of such a pool of
processes is made up of multiple instances of a process that
makes a connection to a database, such as an Oracle®
database. Since resources are consumed with forming and
maintaining each database connection, it is desirable to limit
the number of such processes that are active. When a work
element to be processed at a vertex requires a process for
accessing the database, one of the processes of the pool
(which has already established its connection with the
database) is associated with that vertex. In this way, the
overhead of starting the process is avoided, as are the
initialization steps of that process that would have been
required to connect to that database.

System 200 supports different approaches to configuring
processes for vertices, which differ in when the vertices are
associated with pool processes and when the computation
for the vertices is initiated. In one type of configuration, a
process is not associated with a vertex until all the data at all
its input work elements are completely available. If a work
element is large, it may take some time for the entire work
element to be computed by the upstream vertex and to be
available. This type of configuration avoids blocking the
process waiting for input to become available.

Another type of configuration uses a streaming mode. A
process is associated with a vertex and initiated when at least
the start of each input is available. The remainder of each of
its inputs becomes available while the process executes. If
that input becomes available sufficiently quickly, the process
does not block waiting for input. However, if the inputs do
not become available, the process may block.

Another type of configuration uses a disk buffering mode
in which a data flow is explicitly identified as being buffered
on a disk or other storage device. For example, an upstream
process writes its outputs to a disk and the downstream
process is only notified when that entire input is available to
be read from the disk. For such a data flow, entry 362 in the
corresponding FIFO queue 360 identifies the location of the
data on the disk rather than holding the data directly in the
FIFO queue. This configuration conserves the shared
memory segment that holds FIFO queues since a disk is used
rather than using memory space buffer for inputs and out-
puts.
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There are also various degrees of specificity of the pools
of processes. One type of pool may be made up of processes
that are very tailored to a particular vertex of particular type
of graph. In another type of pool, the processes may be more
generic and applicable to a number of different vertices.
Such processes are customized at the time that they are
associated with a particular vertex. For example, the pro-
cesses in a pool may be made up of data translator processes,
which are generic to a number of different kinds of trans-
lation. Configuration data 338 associated with a particular
vertex provides information that is used to configure the
translator for that particular vertex. In an even more generic
pool of processes, each process may implement a virtual
machine, such as a Java virtual machine (JVM), and con-
figuration data 338 for a vertex identifies a program to
execute using the virtual machine.

When a process is signaled to process an entry in the work
queue for its pool, the process acts on any configuration data
338 before processing the work elements. The process
accesses the configuration data by first identifying the vertex
the processing is associated with, and then accessing the
corresponding vertex record 332 in the shared memory
segment to find the configuration data 338. The process then
locates work elements 362 to process in the FIFO queues
360 for the input links for the vertex, and when complete,
writes data to the FIFO queues for the vertex’s output links.
4. Computation Control

Referring to FIGS. 5 to 8, system 200 uses an event-
driven control approach that is coordinated by the GEC
module 220.

FIG. 5 is a flowchart for system initialization. The GEC
module 220 first creates the process pools and their associ-
ated work queues (step 510). As part of this step, the GEC
module 220 creates a separate work queue for each process
pool. Next, the GEC module 220 creates a graph template
310 in its address space for each type of computation graph
that may need to process a work flow, and creates a shared
memory segment in which the runtime data structures for the
graph instances will be created (step 520).

FIG. 6 is a flowchart for processing each work flow. When
the GEC module 220 receives a request to process a work
flow, it first creates a graph instance of the type of compu-
tation graph needed to process that work flow (step 610). As
part of this process, the GEC module 220 allocates a portion
of the shared memory segment for the runtime data structure
300 for the graph instance, and copies the graph template
310 for that type of computation graph into runtime data
structure 300, thereby initializing the runtime data structure.
The GEC module 220 then executes the graph instance (step
620), as described below. When the entire work flow has
been processed, the GEC module 220 preferably releases the
assigned resources and deletes the runtime data structure for
the graph instance, thus permitting that portion of the shared
memory segment to be reused for other graph instances (step
630).

FIG. 7 is a flowchart for execution of an instance of a
computation graph. Execution of a graph instance (see FIG.
6, step 620) involves first scanning the vertices of the graph
to determine whether any are initialized to have an input
count of zero, which indicates that they do not require an
input on any flow before executing (step 710). The vertices
with zero input counts are runnable and are added to the
work queues for their associated process pools (step 712).
Because the first vertex in this example does not have any
input links, it is ready to run when execution of the graph
instance begins and is put in a work queue. If there are any
processes in the process pools that is available to run the
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computation for these vertices (step 720), then the GEC
module 220 assigns that computing resource to the graph
instance, immediately signals that process to run the
computation, and de-queues the entry from the work queue
(step 730). If no process is available from the pools, the
initially runnable vertices remain in the work queues until a
later time when a process in a pool completes running its
computation for a vertex in another graph instance and
becomes available.

A process in a process pool that runs the computation for
a vertex dequeues the input work elements from the FIFO
queues 360 for the input links, and queues the output work
elements to the FIFO queues 360 for the output links of the
vertex. Dequeue and enqueue of the work elements from the
FIFO queues preferably maintains input counts 336 for the
vertices so that runable vertices have zero values of their
associated input count 336. If at times inputs are not
available for processing, the process blocks until the inputs
are produced by an upstream vertex and queued in the FIFO
queues. When the process completes the computation for a
work flow at a vertex, it signals the GEC module 220 that it
has completed. The GEC module 220 can then assign the
process to a different vertex that is queued in the work queue
for that processes pool.

FIG. 8 is a flowchart for completion of processing for a
vertex. When the GEC module 220 is signaled by a process
that it has completed its processing, and is therefore avail-
able to be assigned to another vertex, the GEC module 220
first checks to see if there are any runnable vertices in any
of'the graph instances (step 810). As noted above, a runnable
vertex is one for which each of its input links has a work
element ready to be read, as indicated by the input count 336
being zero in the vertex record 332 for that vertex. The
runnable vertices are added to the appropriate work queues
for their corresponding process pools (step 820). If there are
any processes available to run computations for vertices in
the work queues (step 830), then all such processes are
signaled to run the computations for the runnable vertices
(step 840).

Finally, any graph instance for which there are no longer
any runnable vertices has completed processing of its work
flow, and the GEC module 220 completes the execution of
that graph instance (step 850), resulting in the graph instance
being removed (see FIG. 6, step 630).

The computation control described above supports a
number of different work flow approaches. For example, a
work flow may be associated with a single transaction, and
vertices process at most one work element for each of the
input links and produce zero or one work elements on their
outputs. A work flow can also be associated with a stream of
work elements, for example, for processing an entire batch
of transactions. In such a case, each vertex processes a
stream of inputs and produces zero or one output for each set
of its inputs.

In order for a vertex to detect that it will not receive any
more inputs, as opposed to its inputs not yet being available,
each upstream vertex optionally sends an explicit terminator
on its downstream links. These terminators are queued and
affect the input count in the same way as work elements.
Therefore, when a vertex has a terminator at each of its
inputs, it outputs a terminator on each of its outputs before
completing its processing. By using such terminators, a
process that implements a process does not have to be
preconfigured to process single transactions or streams of
transactions.

5. Alternatives

In the approach to computation control described above,

after a process from a process pool is assigned to a vertex in
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a graph instance, it is free to execute until it has completed
processing of work elements in the work flow. An alternative
is to limit the amount of processing at a vertex, for example,
according to the amount of unprocessed output it has
produced, the amount of input it has produced, or according
to a processing time.

Another alternative is to relax the requirement that a
process is assigned to a vertex from the time that the vertex
is runnable until the vertex has completed processing of the
work flow. If the vertex does not have to maintain state
between processing of successive work elements in a stream
of work elements for a work flow, then the process can be
returned to the pool after processing a number of work
elements, for example, after processing a single work ele-
ment. Therefore, the same processes can then be used to
perform the processing of multiple different vertices even in
the same graph instance. If a process must maintain state
between processing of work elements in a stream, such state
can be separately maintained for the vertex and reloaded into
a process when it is assigned to a vertex.

A number of optimizations of the computation control can
be used. In a first optimization, propagation of work flow
terminators through a graph instance avoids associating
processes with vertices if all the inputs are terminators. The
terminators on the inputs are dequeued, and a terminator is
enqueued on each output. In another optimization, a process
that completes processing for a vertex can check to see
whether it is suitable for processing a downstream vertex,
and then associate itself with that vertex, thereby avoiding
the need to return itself to a process pool and then be
reassigned to a vertex.

As another alternative, the number of processes in a
process pool is optionally allowed to grow and shrink. For
example, one option is that there is a minimum number of
members of a pool. Depending on demand for that pool,
additional members in the pool are created, followed by a
gradual removal of those members as the pool processes
become idle. Another option is to use a schedule for deter-
mining the number of members in a pool. For example, there
may be more need for more members at different times of
day. For instance, if the system is processing live
transactions, a certain type of transaction may be more likely
at one time of day than at another time of day.

As an alternative to, or in addition to, using “heavy-
weight” processes as member of process pools, a pool can be
made up of a different type of process. For example, one
type of alternative pool may use a single UNIX process for
the pool as a whole, but the member “processes” may be
lightweight threads that are pre-created and ready to run.

Another alternative is to pre-create graph pools of already
instantiated computation graphs in anticipation of there
being work flows that will require them. When a work flow
needs a graph instance, if one is available from a graph pool,
it is assigned from the pool rather than having to be created.
In this way, the startup cost for a work flow is further
reduced. When the computation for the work flow is
completed, the graph is reset by restoring variables to their
initial values prior to having been assigned to the work flow
(for example, resetting input counts 336) and freeing any
dynamically-assigned memory. After the graph is reset it is
returned to the pool.

As with the process pools, the number of graph instances
in a graph pool can be allowed to grow as needed. For
instance, there might be a minimum number of instances in
each graph, and more may be created as needed.

In some alternative versions of the system, a work queue
for each process pool is not necessary. For instance, when-
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ever a member pool process is ready to take on a new task,
the GEC module 220 can scan through every instance of
every vertex in each graph instance to see whether there is
an appropriate process to take on that work. Other alterna-
tives include us of data structures other than work queues to
identify runnable vertices. For example, a hash table can be
used to identify the vertices that can be run.

In the description above, pool processes may be assigned
to vertices in the graph in an on-demand manner where they
are not associated with a vertex until after all the inputs to
that vertex are available. Another approach is to associate
the processes to the vertices when the work flow is associ-
ated with the graph instance and to maintain the association
until the entire work flow has been processed.

As described above, the runtime data structure defines an
entire computation graph. In alternative versions of the
system, the approach described above can be combined with
more traditional approaches for communicating between
vertices in a computation graph. For example, a separate
runtime data structure can be associated with different
subgraphs of the graph. Different subgraphs can then be
executed on processors that do not share memory, and
communication between vertices on different processors can
use communication approaches such as sockets.

The approach described above can be extended to other
graph specifications. For example, a hierarchical specifica-
tion of a computation graph can be implemented by assem-
bling a graph instance from templates for the various nested
computation graphs.

As described above, the GEC module 220 computes and
stores graph templates in working memory. As an
alternative, these graph templates can be stored in external
memory, such as on magnetic disks. As another alternative,
the graph templates are not necessarily memory images that
are reproduced to form a graph instances. For example, a
graph template can include a compressed or symbolic rep-
resentation that is used to form a corresponding graph
instance.

In general, various alternative forms of memory sharing
can be used, for instance, depending on the operating system
used.

6. Applications

One application of computation graphs of the type
described above is for processing financial transactions in a
banking application. In general, different types of transac-
tions require different types of computation graphs. A typical
computation graph is associated with some combination of
a type of customer transaction and “backend” services that
are needed to process the transaction. For example, trans-
actions can be ATM requests, bank teller inputs, and
business-to-business transactions between computers or web
servers. Different customers might have different backend
systems, particularly when banks consolidate and customers
are combined from different original banks. Their accounts
may be maintained on very different backend systems even
though they are all customers of the acquiring bank.
Therefore, different vertices in a graph may be used to
process different transactions. Different services may be
associated with vertices in the graph. For instance, some of
the vertices may be associated with functions such as
updating a balance, depositing money in an account, or
performing an account hold so funds are held in an account.
In accordance with the invention, on-the-fly assignment of
processes to vertices avoids the overhead of having pro-
cesses for unused vertices remain idle.

7. Implementation

The invention may be implemented in hardware or

software, or a combination of both (e.g., programmable
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logic arrays). Unless otherwise specified, the algorithms
included as part of the invention are not inherently related to
any particular computer or other apparatus. In particular,
various general purpose machines may be used with pro-
grams written in accordance with the teachings herein, or it
may be more convenient to construct more specialized
apparatus (e.g., integrated circuits) to perform particular
functions. Thus, the invention may be implemented in one or
more computer programs executing on one or more pro-
grammed or programmable computer systems (which may
be of various architectures such as distributed, client/server,
or grid) each comprising at least one processor, at least one
data storage system (including volatile and non-volatile
memory and/or storage elements), at least one input device
or port, and at least one output device or port. Program code
is applied to input data to perform the functions described
herein and generate output information. The output infor-
mation is applied to one or more output devices, in known
fashion.

Each such program may be implemented in any desired
computer language (including machine, assembly, or high
level procedural, logical, or object oriented programming
languages) to communicate with a computer system. In any
case, the language may be a compiled or interpreted lan-
guage.

Each such computer program is preferably stored on or
downloaded to a storage media or device (e.g., solid state
memory or media, or magnetic or optical media) readable by
a general or special purpose programmable computer, for
configuring and operating the computer when the storage
media or device is read by the computer system to perform
the procedures described herein. The inventive system may
also be considered to be implemented as a computer-
readable storage medium, configured with a computer
program, where the storage medium so configured causes a
computer system to operate in a specific and predefined
manner to perform the functions described herein.

It is to be understood that the foregoing description is
intended to illustrate and not to limit the scope of the
invention, which is defined by the scope of the appended
claims. Other embodiments are within the scope of the
following claims.

What is claimed is:

1. A method for executing, on a computer system, graphs-
expressing computations including:

providing, on the computer system, two or more graph

templates each associated with a different type of
computation graph, each computation graph including
a number of graph elements each associated with a
corresponding computation;

managing one or more pools of computing resources,

wherein each graph element of a computation is asso-
ciated with a corresponding one of the pools of com-
puting resources; and

receiving one or more data streams, each associated with

a corresponding graph template,
processing the data streams, including for each of the data
streams,
identifying the graph template associated with the data
stream,
forming a graph instance from identified graph
template,
for each graph element of the graph instance, assigning
computing resources from
corresponding pools of computing resources, and
processing the data stream with the graph instance,
including performing the computations corresponding
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to the graph elements of such graph instance using the
assigned computing resources.

2. The method of claim 1, wherein the graph elements
include vertices of the computation graph.

3. The method of claim 1, wherein the graph elements
include links of the computation graph.

4. The method of claim 1, wherein the computation
resources include processes.

5. The method of claim 1, wherein the computation
resources include processes threads.

6. The method of claim 1, wherein the computation
resources include database connections.

7. The method of claim 1, wherein providing the two or
more graph templates includes storing the templates in
volatile memory.

8. The method of claim 1, wherein providing the two or
more graph templates includes storing the templates in
non-volatile memory.

9. The method of claim 1, wherein forming the graph
instance from the graph template includes forming such
instance in volatile memory.

10. The method of claim 9, wherein forming the graph
instance includes allocating a portion of the memory to the
graph instance and copying the graph template to such
portion of the memory.

11. The method of claim 1, wherein assigning computing
resources includes assigning each of such resources dynami-
cally for part of the computation on the data stream.

12. The method of claim 11, wherein assigning each of the
resources dynamically for processing part of the computa-
tion occurs when at least some part of all of the inputs for
such part of the computation are available.

13. The method of claim 12, wherein assigning each of the
resources dynamically for processing part of the computa-
tion occurs when all of the inputs for such part of the
computation are available.

14. The method of claim 11, wherein assigning each of the
resources dynamically includes deassigning the computation
resource from the graph element.

15. The method of claim 1, wherein assigning computing
resources includes assigning each of such computing
resources for the graph element for processing all of the data
stream.

16. The method of claim 1, further including releasing the
computing resources assigned to graph eclements and
destroying the instance of the graph.

17. The method of claim 1, wherein processing the one or
more data streams includes concurrently processing at least
two data streams each associated with a different computa-
tion graph.

18. The method of claim 17, wherein at least one graph
element of instances of each of the different computation
graphs is associated with a same corresponding pool of
computation resources.

19. The method of claim 18, wherein at least one com-
puting resource of the same corresponding pool of compu-
tation resources is assigned at different times to the at least
one graph element of the instances of the different compu-
tation graphs.

20. The method of claim 1, wherein managing one or
more pools of computing resources includes forming at least
two pools of computing resources, wherein a first graph
element of a computation is associated with a corresponding
first pool of computing resources and a second graph ele-
ment of a computation is associated with a corresponding
second pool of computing resources.

21. The method of claim 1, wherein providing the two or
more graph templates including storing the temples in an
external storage.
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22. The method of claim 21, wherein forming the graph
instance from the graph template includes forming said
instance in a working storage.

23. The method of claim 1, wherein forming the graph
instance from the graph template includes forming said
instance in temporary memory.

24. A computer program, stored on a computer-readable
medium, for executing on a computer system, graphs
expressing computations, the computer program comprising
instructions for causing a computer system to:

provide two or more graph templates each associated with

a different type of computation computation graph,
each computation graph including a number of graph
elements each associated with a corresponding com-
putation;

manage one or more pools of computing resources,

wherein each graph element of a computation is asso-
ciated with a corresponding one of the pools of com-
puting resources; and

process one or more data streams, each associated with a

corresponding graph template, including for each of the
data streams:

identifying the graph template associated with the data

stream,

forming a graph instance from the identified graph

template,

for each graph elements of the graph instance, assigning

computing resources
from corresponding pools, and
processing the data stream with the graph instance,
including performing the
computation corresponding to the graph elements of
such graph instance
using the assigned computing resources.

25. The computer program of claim 24, wherein manag-
ing one or more pools of computing resources includes
forming at least two pools of computing resources, wherein
a first graph element of computation is associated with a
corresponding first pool of computing resources and a
second graph element of a computation is associated with a
corresponding second pool of computing resources.

26. The computer program of claim 24, wherein the graph
elements include vertices of the computation graph.

27. The computer program of claim 24, wherein the graph
elements include links of the computation graph.

28. The computer program of claim 24, wherein the
computing resources include processes.

29. The computer program of claim 24, wherein the
computing resources include processes threads.

30. The computer program of claim 24, wherein the
computing resources include database connections.

31. The computer program of claim 24, wherein providing
the two or more graph templates include storing the tem-
plates in volatile memory.

32. The computer program of claim 24, wherein providing
the two or more graph templates includes storing the tem-
plates in non-volatile memory.

33. The computer program of claim 24, wherein forming
the graph instance from the graph template includes forming
such instance in volatile memory.

34. The computer program of claim 33, wherein forming
the graph instance includes allocating a portion of the
memory to the graph instance and copying the graph tem-
plate to such portion of the memory.

35. The computer program of claim 24, wherein assigning
computing resources includes assigning each of such
resources dynamically for part of the computation on the
data stream.
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36. The computer program of claim 35, wherein assigning
each of the resources dynamically for processing part of the
computation occurs when at least some part of all of the
inputs for such part of the computation are available.

37. The computer program of claim 36, wherein assigning
each of the resources dynamically for processing part of the
computation occurs when all of the inputs for such part of
the computation are available.

38. The computer program of claim 35, wherein assigning
each of the resources dynamically includes deassigning the
computing resource from the graph element.

39. The computer program of claim 24, wherein assigning
computing resources includes assigning each of such com-
puting resources for the graph element for processing all of
the data stream.

40. The computer program of claim 24, wherein process-
ing the one or more data streams further includes releasing
the computing resources assigned to graph elements and
destroying the instance of the graph.

41. The computer program of claim 24, wherein process-
ing the one or more data streams includes concurrently
processing at least two data streams each associated with a
different computation graph.

42. The computer program of claim 41, wherein at least
one graph element of instances of each of the different
computation graphs is associated with a same corresponding
pool of computing resources.

43. The computer program of claim 42, wherein at least
one computing resource of the same corresponding pool of
computing resources is assigned at different times to the at
least one graph element of the instances of the different
computation graphs.

44. The computer program of claim 24, wherein providing
the two or more graph templates includes storing the tem-
plates in an external storage.

45. The computer program of claim 44, wherein forming
the graph instance from the graph template includes forming
said instance in a working storage.

46. The computer program of claim 24, wherein forming
the graph instance from the graph template includes forming
said instance in temporary memory.

47. A method for processing data, on a computer system,
including:

providing, on the computer system, two or more graph

templates each associated with a different set of opera-
tions to be performed on an incoming data stream and
each representing a computation graph including a
number of graph elements each associated with a
corresponding computation;

managing one or more pools of computing resources,

wherein each graph element of a computation is asso-
ciated with a corresponding one of the pools of com-
puting resources;

receiving one or more data streams; and for each of the

data streams, identifying the graph template associated
with the data stream, forming a graph instance from the
identified graph template, for each graph element of the
graph instance, assigning computing resources from a
corresponding pool of computing resources, using the
data stream as input to the graph instance, and per-
forming the computations corresponding to the graph
elements of such graph instance using the assigned
computing resources.

48. The method of claim 47, wherein the graph elements
include vertices of the computation graph.

49. The method of claim 47, wherein the graph elements
include links of the computation graph.
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50. The method of claim 47, wherein the computing
resources include processes.

51. The method of claim 47, wherein the computing
resources include process threads.

52. The method of claim 47, wherein the computing
resources include database connections.

53. The method of claim 47, wherein providing the two or
more graph templates includes storing the templates in
volatile memory.

54. The method of claim 47, wherein providing the two or
more graph templates includes storing the templates in
non-volatile memory.

55. The method of claim 47, wherein forming the graph
instance from the graph template includes forming such
instance in volatile memory.

56. The method of claim 55, wherein forming the graph
instance includes allocating a portion of the memory to the
graph instance and copying the graph template to such
portion of the memory.

57. The method of claim 47, wherein assigning computing
resources includes assigning each of such resources dynami-
cally for part of the computation on the data stream.

58. The method of claim 57, wherein assigning each of the
resources dynamically for processing part of the computa-
tion occurs when at least some part of all of the inputs for
such part of the computation are available.

59. The method of claim 58, wherein assigning each of the
resources dynamically for processing part of the computa-
tion occurs when all of the inputs for such part of the
computation are available.

60. The method of claim 57, wherein assigning each of the
resources dynamically includes deassigning the computing
resource from the graph element.

61. The method of claim 47, wherein assigning computing
resources includes assigning each of such computing
resources for the graph element for processing all of the data
stream.

62. The method of claim 47, further including, for each of
the data streams, releasing the computing resources assigned
to graph elements and destroying the instance of the graph.

63. The method of claim 47, further including concur-
rently processing at least two data streams each associated
with a different computation graph.

64. The method of claim 63, wherein at least one graph
element of instances of each of the different computation
graphs is associated with a same corresponding pool of
computing resources.

65. The method of claim 64, wherein at least one com-
puting resource of the same corresponding pool of comput-
ing resources is assigned at different times to the at least one
graph element of the instances of the different computation
graphs.

66. The method of claim 47, wherein managing one or
more pools of computing resources includes forming at least
two pools of computing resources, wherein a first graph
element of a computation is associated with a corresponding
first pool of computing resources and a second graph ele-
ment of a computation is associated with a corresponding
second pool of computing resources.

67. The method of claim 47, wherein providing the two or
more graph templates includes storing the templates in an
external storage.

68. The method of claim 67, wherein forming the graph
instance from the graph template includes forming said
instance in a working storage.

69. The method of claim 47, wherein forming the graph
instance from the graph template includes forming said
instance in temporary memory.
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70. A computer program, stored on a computer-readable
medium, for processing data, the computer program com-
prising instructions for causing a computer system to:
provide two or more graph templates each associated with
a different set of operations to be performed on an
incoming data stream and each representing a compu-
tation graph including a number of graph elements each
associated with a corresponding computation;

manage one or more pools of computing resources,
wherein each graph element of a computation is asso-
ciated with a corresponding one of the pools of com-
puting resources;

receive one or more data streams; and

for each of the data streams,

identify the graph template associated with the data
stream,

form a graph instance from the identified graph
template,

for each graph element of the graph instance, assign
computing resources from a
corresponding pool of computing resources,

use the data stream as input to the graph instance, and

perform the computations corresponding to the graph
elements of such graph
instance using the assigned computing resources.

71. The computer program of claim 70, wherein the graph
elements include vertices of the computation graph.

72. The computer program of claim 70, wherein the graph
elements include links of the computation graph.

73. The computer program of claim 70, wherein the
computing resources include processes.

74. The computer program of claim 70, wherein the
computing resources include process threads.

75. The computer program of claim 70, wherein the
computing resources include database connections.

76. The computer program of claim 70, wherein providing
the two or more graph templates includes storing the tem-
plates in volatile memory.

77. The computer program of claim 70, wherein providing
the two or more graph templates includes storing the tem-
plates in non-volatile memory.

78. The computer program of claim 70, wherein forming
the graph instance from the graph template includes forming
such instance in volatile memory.

79. The computer program of claim 78, wherein forming
the graph instance includes allocating a portion of the
memory to the graph instance and copying the graph tem-
plate to such portion of the memory.

80. The computer program of claim 70, wherein assigning
computing resources includes assigning each of such
resources dynamically for part of the computation on the
data stream.

81. The computer program of claim 80, wherein assigning
each of the resources dynamically for processing part of the
computation occurs when at least some part of all of the
inputs for such part of the computation are available.

82. The computer program of claim 81, wherein assigning
each of the resources dynamically for processing part of the
computation occurs when all of the inputs for such part of
the computation are available.

83. The computer program of claim 80, wherein assigning
each of the resources dynamically includes deassigning the
computing resource from the graph element.

84. The computer program of claim 80, wherein assigning
computing resources includes assigning each of such com-
puting resources for the graph element for processing all of
the data stream.
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85. The computer program of claim 80, further including,
for each of the data streams, releasing the computing
resources assigned to graph elements and destroying the
instance of the graph.

86. The computer program of claim 80, further including
concurrently processing at least two data streams each
associated with a different computation graph.

87. The computer program of claim 86, wherein at least
one graph element of instances of each of the different
computation graphs is associated with a same corresponding
pool of computing resources.

88. The computer program of claim 87, wherein at least
one computing resource of the same corresponding pool of
computing resources is assigned at different times to the at
least one graph element of the instances of the different
computation graphs.

89. The computer program of claim 70, wherein manag-
ing one or more pools of computing resources includes
forming at least two pools of computing resources, wherein
a first graph element of a computation is associated with a
corresponding first pool of computing resources and a
second graph element of a computation is associated with a
corresponding second pool of computing resources.

90. The computer program of claim 70, wherein providing
the two or more graph templates includes storing the tem-
plates in an external storage.

91. The computer program of claim 90, wherein forming
the graph instance from the graph template includes forming
said instance in a working storage.

92. The computer program of claim 70, wherein forming
the graph instance from the graph template includes forming
said instance in temporary memory.

93. A system for processing data, including:

two or more graph templates stored in data storage, each

associated with a different set of operations to be
performed on an incoming data stream and each rep-
resenting a computation graph including a number of
graph elements each associated with a corresponding
computation;

means for managing one or more pools of computing

resources, wherein each graph element of a computa-
tion is associated with a corresponding one of the pools
of computing resources;

means for receiving one or more data streams; and

means for processing the data streams, including for each

of the data streams,

identifying the graph template associated with the data
stream,

forming a graph instance from the identified graph
template,

for each graph element of the graph instance, assigning
computing resources from
a corresponding pool of computing resources,

using the data stream as input to the graph instance, and

performing the computations corresponding to the
graph elements of such graph
instance using the assigned computing resources.

94. The system of claim 93, wherein the graph elements
include vertices of the computation graph.

95. The system of claim 93, wherein the graph elements
include links of the computation graph.

96. The system of claim 93, wherein the computing
resources include processes.

97. The system of claim 93, wherein the computing
resources include process threads.

98. The system of claim 93, wherein the computing
resources include database connections.
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99. The system of claim 93, wherein providing the two or
more graph templates includes storing the templates in
volatile memory.

100. The system of claim 93, wherein providing the two
or more graph templates includes storing the templates in
non-volatile memory.

101. The system of claim 93, wherein forming the graph
instance from the graph template includes forming such
instance in volatile memory.

102. The system of claim 101, wherein forming the graph
instance includes allocating a portion of the memory to the
graph instance and copying the graph template to such
portion of the memory.

103. The system of claim 93, wherein assigning comput-
ing resources includes assigning each of such resources
dynamically for part of the computation on the data stream.

104. The system of claim 103, wherein assigning each of
the resources dynamically for processing part of the com-
putation occurs when at least some part of all of the inputs
for such part of the computation are available.

105. The system of claim 103, wherein assigning each of
the resources dynamically for processing part of the com-
putation occurs when all of the inputs for such part of the
computation are available.

106. The system of claim 103, wherein assigning each of
the resources dynamically includes deassigning the comput-
ing resource from the graph element.

107. The system of claim 93, wherein assigning comput-
ing resources includes assigning each of such computing
resources for the graph element for processing all of the data
stream.

108. The system of claim 93, further including, for each
of the data streams, releasing the computing resources
assigned to graph elements and destroying the instance of
the graph.

109. The system of claim 93, further including concur-
rently processing at least two data streams each associated
with a different computation graph.

110. The system of claim 109, wherein at least one graph
element of instances of each of the different computation
graphs is associated with a same corresponding pool of
computing resources.

111. The system of claim 110, wherein at least one
computing resource of the same corresponding pool of
computing resources is assigned at different times to the at
least one graph element of the instances of the different
computation graphs.

112. The system of claim 93, wherein managing one or
more pools of computing resources includes forming at least
two pools of computing resources, wherein a first graph
element of a computation is associated with a corresponding
first pool of computing resources and a second graph ele-
ment of a computation is associated with a corresponding
second pool of computing resources.

113. The system of claim 93, wherein providing the two
or more graph templates includes storing the templates in an
external storage.

114. The system of claim 113, wherein forming the graph
instance from the graph template includes forming said
instance in a working storage.

115. The system of claim 93, wherein forming the graph
instance from the graph template includes forming said
instance in temporary memory.

116. A system for executing, on a computer system,
graphs expressing computations including:

two or more graph templates stored in data storage each

associated with a different type
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of graph-based computation, each template comprising
a number of graph

elements each associated with a corresponding com-
putation;

means for managing one or more pools of computing

resources, wherein each graph

element of graph template is associated with a corre-
sponding one of the pools of

computing resources; and

means for processing one or more data streams, each
associated with a corresponding
graph template, including for each of the data streams,
identifying the graph template associated with the data
stream,
forming a graph instance from the identified graph
template, said graph instance
having a graph elements corresponding to the graph
elements of the graph
template,

for each graph element of the graph instance, assigning
computing resources from
a corresponding one of the pools of computing
resources, and

processing the data stream with the graph instance,
including performing
computations corresponding to the graph elements of
such graph instance
using the assigned computing resources.

117. The system of claim 116, wherein the graph elements
include vertices of the computation graph.

118. The system of claim 116, wherein the graph elements
include links of the computation graph.

119. The system of claim 116, wherein the computing
resources include processes.

120. The system of claim 116, wherein the computing
resources include process threads.

121. The system of claim 116, wherein the computing
resources include database connections.

122. The system of claim 116, wherein providing the two
or more graph templates includes storing the templates in
volatile memory.

123. The system of claim 116, wherein providing the two
or more graph templates includes storing the templates in
non-volatile memory.

124. The system of claim 116, wherein forming the graph
instance from the graph template includes forming such
instance in volatile memory.

125. The system of claim 124, wherein forming the graph
instance includes allocating a portion of the memory to the
graph instance and copying the graph template to such
portion of the memory.
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126. The system of claim 116, wherein assigning com-
puting resources includes assigning each of such resources
dynamically for part of the computation on the data stream.

127. The system of claim 126, wherein assigning each of
the resources dynamically for processing part of the com-
putation occurs when at least some part of all of the inputs
for such part of the computation are available.

128. The system of claim 127, wherein assigning each of
the resources dynamically for processing part of the com-
putation occurs when all of the inputs for such part of the
computation are available.

129. The system of claim 126, wherein assigning each of
the resources dynamically includes deassigning the comput-
ing resource from the graph element.

130. The system of claim 116, wherein assigning com-
puting resources includes assigning each of such computing
resources for the graph element for processing all of the data
stream.

131. The system of claim 116, wherein processing the one
or more data streams further includes releasing the comput-
ing resources assigned to graph elements and destroying the
instance of the graph.

132. The system of claim 116, wherein processing the one
or more data streams includes concurrently processing at
least two data streams each associated with a different
computation graph.

133. The system of claim 132, wherein at least one graph
element of instances of each of the different computation
graphs is associated with a same corresponding pool of
computing resources.

134. The system of claim 133, wherein at least one
computing resource of the same corresponding pool of
computing resources is assigned at different times to the at
least one graph element of the instances of the different
computation graphs.

135. The system of claim 116, wherein managing one or
more pools of computing resources includes forming at least
two pools of computing resources, wherein a first graph
element of a computation is associated with a corresponding
first pool of computing resources and a second graph ele-
ment of a computation is associated with a corresponding
second pool of computing resources.

136. The system of claim 116, wherein providing the two
or more graph templates includes storing the templates in an
external storage.

137. The system of claim 136, wherein forming the graph
instance from the graph template includes forming said
instance in a working storage.

138. The system of claim 116, wherein forming the graph
instance from the graph template includes forming said
instance in temporary memory.

#* #* #* #* #*



