The UNIX-HATERS Handbook

Click here to see full cover (195K bytes).

Published by IDG Books, Programmers Press

Editors: Simson Garfinkel, Daniel Weise, and Steven Strassmann

ISBN: 1-56884-203-1

Publication Date: June, 1994, 329 pages + free Unix Barf Bag

Price: $16.95 USA, $22.95 Canada, 15.99 pounds UK

Out of print since October 1997 (after a press run of 20,000 copies)

About the UNIX-HATERS mailing list

Table of Contents

Foreword, by Donald Norman

Preface

Anti-Foreword, by Dennis Ritchie

Part 1: User Friendly?

1 Unix. The World's First Computer Virus

2 Welcome, New User! Like Russian Roulette with Six Bullets Loaded

3 Documentation? What Documentation?

4 Mail. Don't Talk to Me, I'm Not a Typewriter

5 Snoozenet. I Post, Therefore I Am

6 Terminal Insanity. Curses! Foiled Again!

7 The X-Windows Disaster. How to Make a 50-MIPS Workstation Run Like a 4.77MHz IBM PC

Part 2: Programmer's System?

8 csh, pipes, and find. Power Tools for Power Fools

9 Programming. Hold Still, This Won't Hurt a Bit

10 C++. The COBOL of the 90s

Part 3: Sysadmin's Nightmare

11 System Administration. Unix's Hidden Cost

12 Security. Oh, I'm Sorry, Sir, Go Ahead, I didn't Realize You Were Root

13 The File System. Sure It Corrupts Your Files, But Look How Fast It Is!

14 NFS. Nightmare File System

Part 4: Et Cetera

A Epilogue. Enlightenment Through Unix

B Creators Admit C, Unix Were Hoaxes

C The Rise of Worse is Better, by Richard P. Gabriel

D Bibliography

--

Editors of "The Unix-Haters handbook", ugh@next.cambridge.ma.us

--

==

Preface to The Unix-Haters Handbook
(Editors note: this page is a verbatim reproduction of the preface in the published version of "The UNIX-HATERS Handbook.")

Things Are Going to Get a Lot Worse
Before Things Get Worse

"I liken starting one's computing career with Unix, say as an undergraduate, to being born in East Africa. It is intolerably hot, your body is covered with lice and flies, you are malnourished and you suffer from numerous curable diseases. But, as far as young East Africans can tell, this is simply the natural condition and they live within it. By the time they find out differently, it is too late. They already think that the writing of shell scripts is a natural act."

Ken Pier, Xerox PARC

Modern Unix is a catastrophe. It's the "Un-Operating System": unreliable, unintuitive, unforgiving, unhelpful, and underpowered. Little is more frustrating than trying to force Unix to do something useful and nontrivial. Modern Unix impedes progress in computer science, wastes billions of dollars, and destroys the common sense of many who seriously use it. An exaggeration? You won't think so after reading this book.

Deficient by Design

The original Unix solved a problem and solved it well, as did the Roman numeral system, the mercury treatment for syphilis, and carbon paper. And like those technologies, Unix, too, rightfully belongs to history. It was developed for a machine with little memory, tiny disks, no graphics, no networking, and no power. In those days it was mandatory to adopt an attitude that said: "Being small and simple is more important than being complete and correct." "You only have to solve 90% of the problem." "Everything is a stream of bytes."

These attitudes are no longer appropriate for an operating system that hosts complex and important applications. They can even be deadly when Unix is used by untrained operators for safety-critical tasks.

Ironically, the very attributes and design goals that made Unix a success when computers were much smaller, and were expected to do far less, now impede its utility and usability. Each graft of a new subsystem onto the underlying core has resulted in either rejection or graft vs. host disease with its concomitant proliferation of incapacitating scar tissue. The Unix networking model is a cacophonous Babel of Unreliability that quadrupled the size of Unix's famed compact kernel. Its window system inherited the cryptic unfriendliness of its character-based interface, while at the same time realized new ways to bring fast computers to a crawl. Its new system administration tools take more time to use than they save. Its mailer makes the U.S. Postal Service look positively stellar.

The passing years only magnify the flaws. Using Unix remains an unpleasant experience for beginners and experts alike. Despite a plethora of fine books on the subject, Unix security remains an elusive goal at best. Despite increasingly fast, intelligent peripherals, high-performance asynchronous I/O is a pipe dream. Even though manufacturers spend millions developing "easy-to-use" graphical user interfaces, few versions of Unix allow you to do anything but trivial system administration without having to resort to the 1970s-style teletype interface. Indeed, as Unix is pushed to be more and more, it instead becomes less and less. Unix cannot be fixed from the inside. It must be discarded.

Who We Are

We are academics, hackers, and professionals. None of us were born in the computing analog of Ken Pier's East Africa. We have all experienced much more advanced, usable, and elegant systems than Unix ever was, or ever can be. Some of these systems have increasingly forgotten names, such as TOPS-20, ITS (the Incompatible Timesharing System), Multics, Apollo Domain, the Lisp Machine, Cedar/Mesa, and the Dorado. Some of us even use Macs and Windows boxes. Many of us are highly proficient programmers who have served our time trying to practice our craft upon Unix systems. It's tempting to write us off as envious malcontents, romantic keepers of memories of systems put to pasture by the commercial success of Unix, but it would be an error to do so: our judgments are keen, our sense of the possible pure, and our outrage authentic. We seek progress, not the reestablishment of ancient relics.

Our story started when the economics of computing began marching us, one by one, into the Unix Gulag. We started passing notes to each other. At first, they spoke of cultural isolation, of primitive rites and rituals that we thought belonged only to myth and fantasy, of depravation and humiliations. As time passed, the notes served as morale boosters, frequently using black humor based upon our observations. Finally, just as prisoners who plot their escape must understand the structure of the prison better than their captors do, we poked and prodded into every crevice. To our horror, we discovered that our prison had no coherent design. Because it had no strong points, no rational basis, it was invulnerable to planned attack. Our rationality could not upset its chaos, and our messages became defeatist, documenting the chaos and lossage.

This book is about people who are in abusive relationships with Unix, woven around the threads in the UNIX-HATERS mailing list. These notes are not always pretty to read. Some are inspired, some are vulgar, some depressing. Few are hopeful. If you want the other side of the story, go read a Unix how-to book or some sales brochures.

This book won't improve your Unix skills. If you are lucky, maybe you will just stop using Unix entirely.

The UNIX-HATERS History

The year was 1987, and Michael Travers, a graduate student at the MIT Media Laboratory, was taking his first steps into the future. For years Travers had written large and beautiful programs at the console of his Symbolics Lisp Machine (affectionately known as a LispM), one of two state-of-the-art AI workstations at the Lab. But it was all coming to an end. In the interest of cost and efficiency, the Media Lab had decided to purge its LispMs. If Travers wanted to continue doing research at MIT, he discovered, he would have to use the Lab's VAX mainframe.

The VAX ran Unix.

MIT has a long tradition of mailing lists devoted to particular operating systems. These are lists for systems hackers, such as ITS-LOVERS, which was organized for programmers and users of the MIT Artificial Intelligence Laboratory's Incompatible Timesharing System. These lists are for experts, for people who can-and have-written their own operating systems. Michael Travers decided to create a new list. He called it UNIX-HATERS:

Date: Thu, 1 Oct 87 13:13:41 EDT
From: Michael Travers <MT>
To: UNIX-HATERS
Subject: Welcome to UNIX-HATERS
In the tradition of TWENEX-HATERS, a mailing list for surly folk who have difficulty accepting the latest in operating system technology.

If you are not in fact a Unix hater, let me know and I'll remove you. Please add other people you think need emotional outlets for their frustration.

The first letter that Michael sent to UNIX-HATERS included a well-reasoned rant about Suns written by another new member of the Unix Gulag: John Rose, a programmer at a well-known Massachusetts computer manufacturer (whose lawyers have promised not to sue us if we don't print the company's name). Like Michael, John had recently been forced to give up a Lisp Machine for a computer running Unix. Frustrated after a week of lost work, he sent this message to his company's internal support mailing list:

Date: Fri, 27 Feb 87 21:39:24 EST
From: John Rose
To: sun-users, systems

Pros and Cons of Suns

Well, I've got a spare minute here, because my Sun's editor window evaporated in front of my eyes, taking with it a day's worth of Emacs state.

So, the question naturally arises, what's good and bad about Suns?

This is the fifth day I've used a Sun. Coincidentally, it's also the fifth time my Emacs has given up the ghost. So I think I'm getting a feel for what's good about Suns.

One neat thing about Suns is that they really boot fast. You ought to see one boot, if you haven't already. It's inspiring to those of us whose LispMs take all morning to boot.

Another nice thing about Suns is their simplicity. You know how a LispM is always jumping into that awful, hairy debugger with the confusing backtrace display, and expecting you to tell it how to proceed? Well, Suns ALWAYS know how to proceed. They dump a core file and kill the offending process. What could be easier? If there's a window involved, it closes right up. (Did I feel a draft?) This simplicity greatly decreases debugging time because you immediately give up all hope of finding the problem, and just restart from the beginning whatever complex task you were up to. In fact, at this point, you can just boot. Go ahead, it's fast!

One reason Suns boot fast is that they boot less. When a LispM loads code into its memory, it loads a lot of debugging information too. For example, each function records the names of its arguments and local variables, the names of all macros expanded to produce its code, documentation strings, and sometimes an interpreted definition, just for good measure.

Oh, each function also remembers which file it was defined in. You have no idea how useful this is: there's an editor command called "meta-point" that immediately transfers you to the source of any function, without breaking your stride. ANY function, not just one of a special predetermined set. Likewise, there's a key that causes the calling sequence of a function to be displayed instantly.

Logged into a Sun for the last few days, my Meta-Point reflex has continued unabated, but it is completely frustrated. The program that I am working on has about 80 files. If I want to edit the code of a function Foo, I have to switch to a shell window and grep for named Foo in various files. Then I have to type in the name of the appropriate file. Then I have to correct my spelling error. Finally I have to search inside the file. What used to take five seconds now takes a minute or two. (But what's an order of magnitude between friends?) By this time, I really want to see the Sun at its best, so I'm tempted to boot it a couple of times.

There's a wonderful Unix command called "strip," with which you force programs to remove all their debugging information. Unix programs (such as the Sun window system) are stripped as a matter of course, because all the debugging information takes up disk space and slows down the booting process. This means you can't use the debugger on them. But that's no loss; have you seen the Unix debugger? Really.

Did you know that all the standard Sun window applications ("tools") are really one massive 3/4 megabyte binary? This allows the tools to share code (there's a lot of code in there). Lisp Machines share code this way, too. Isn't it nice that our workstations protect our memory investments by sharing code.

None of the standard Sun window applications ("tools") support Emacs. Unix applications cannot be patched either; you must have the source so you can patch THAT, and then regenerate the application from the source.

But I sure wanted my Sun's mouse to talk to Emacs. So I got a couple hundred lines of code (from GNU source) to compile, and link with the very same code that is shared by all the standard Sun window applications ("tools"). Presto! Emacs gets mice! Just like the LispM; I remember similar hacks to the LispM terminal program to make it work with Emacs. It took about 20 lines of Lisp code. (It also took less work than those aforementioned couple hundred lines of code, but what's an order of magnitude between friends?)

Ok, so I run my Emacs-with-mice program, happily mousing away. Pretty soon Emacs starts to say things like "Memory exhausted" and "Segmentation violation, core dumped." The little Unix console is consoling itself with messages like "clntudp_create: out of memory." Eventually my Emacs window decides it's time to close up for the day.

What has happened? Two things, apparently. One is that when I created my custom patch to the window system, to send mouse clicks to Emacs, I created another massive 3/4 megabyte binary, which doesn't share space with the standard Sun window applications ("tools").

This means that instead of one huge mass of shared object code running the window system, and taking up space on my paging disk, I had two such huge masses, identical except for a few pages of code. So I paid a megabyte of swap space for the privilege of using a mouse with my editor. (Emacs itself is a third large mass.)

The Sun kernel was just plain running out of room. Every trivial hack you make to the window system replicates the entire window system. But that's not all: Apparently there are other behemoths of the swap volume. There are some network things with truly stupendous-sized data segments. Moreover, they grow over time, eventually taking over the entire swap volume, I suppose. So you can't leave a Sun up for very long. That's why I'm glad Suns are easy to boot!

But why should a network server grow over time? You've got to realize that the Sun software dynamically allocates very complex data structures. You are supposed to call "free" on every structure you have allocated, but it's understandable that a little garbage escapes now and then because of programmer oversight. Or programmer apathy. So eventually the swap volume fills up! This leads me to daydream about a workstation architecture optimized for the creation and manipulation of large, complex, interconnected data structures, and some magic means of freeing storage without programmer intervention. Such a workstation could stay up for days, reclaiming its own garbage, without need for costly booting operations.

But, of course, Suns are very good at booting! So good, they sometimes spontaneously boot, just to let you know they're in peak form!

Well, the console just complained about the lack of memory again. Gosh, there isn't time to talk about the other LispM features I've been free of for the last week. Such as incremental recompilation and loading. Or incremental testing of programs, from a Lisp Listener. Or a window system you can actually teach new things (I miss my mouse-sensitive Lisp forms). Or safe tagged architecture that rigidly distinguishes between pointers and integers. Or the Control-Meta-Suspend key. Or manuals.

Time to boot!

John Rose sent his email message to an internal company mailing list. Somehow it was forwarded to Michael Travers at the Media Lab. John didn't know that Michael was going to create a mailing list for himself and his fellow Unix-hating friends and e-mail it out. But Michael did and, seven years later, John is still on UNIX-HATERS, along with hundreds of other people.

At the end of flame, John Rose included this disclaimer:

[Seriously folks: I'm doing my best to get our money's worth out of this box, and there are solutions to some of the above problems. In particular, thanks to Bill for increasing my swap space. In terms of raw CPU power, a Sun can really get jobs done fast. But I needed to let off some steam, because this disappearing editor act is really getting my dander up.]

Some disclaimer. The company in question had bought its Unix workstations to save money. But what they saved in hardware costs they soon spent (and continue to spend) many times over in terms of higher costs for support and lost programmer productivity. Unfortunately, now that we know better, it is too late. Lisp Machines are a fading memory at the company: everybody uses Unix. Most think of Unix as a pretty good operating system. After all, it's better than DOS.

Or is it?

You are not alone

If you have ever used a Unix system, you have probably had the same nightmarish experiences that we have had and heard. You may have deleted important files and gone for help, only to be told that it was your own fault, or, worse, a "rite of passage." You may have spent hours writing a heart-wrenching letter to a friend, only to have it lost in a mailer burp, or, worse, have it sent to somebody else. We aim to show that you are not alone and that your problems with Unix are not your fault.

Our grievance is not just against Unix itself, but against the cult of Unix zealots who defend and nurture it. They take the heat, disease, and pestilence as givens, and, as ancient shamans did, display their wounds, some self-inflicted, as proof of their power and wizardry. We aim, through bluntness and humor, to show them that they pray to a tin god, and that science, not religion, is the path to useful and friendly technology.

Computer science would have progressed much further and faster if all of the time and effort that has been spent maintaining and nurturing Unix had been spent on a sounder operating system. We hope that one day Unix will be relinquished to the history books and museums of computer science as an interesting, albeit costly, footnote.

Contributors and Acknowledgments

To write this book, the editors culled through six years' archives of the UNIX-HATERS mailing list. These contributors are referenced in each included message and are indexed in the rear of the volume. Around these messages are chapters written by UNIX-HATERS experts who felt compelled to contribute to this expose.

We are:

Simson Garfinkel, a journalist and computer science researcher. Simson received three undergraduate degrees from the Massachusetts Institute of Technology and a Master's degree in journalism from Columbia University. He would be in graduate school working on his Ph.D. now, but this book came up and it seemed like more fun. Simson is also the co-author of Practical Unix Security (O'Reilly and Associates, 1991) and NeXTSTEP Programming (Springer-Verlag, 1993). In addition to his duties as editor, Simson wrote the chapters on Documentation, the Unix File System, Networking, and Security.

Daniel Weise, a researcher at Microsoft's research laboratory. Daniel received his Ph.D. and Master's degrees from the Massachusetts Institute of Technology's Artificial Intelligence Laboratory and was an assistant professor at Stanford University's Department of Electrical Engineering until deciding to enter the real world of DOS and Windows. While at his cushy academic job, Daniel had time to work on this project. Since leaving Stanford for the rainy shores of Lake Washington, a challenging new job and a bouncing, crawling, active baby boy have become his priorities. In addition to initial editing, Daniel wrote large portions of Welcome, New User; Mail; and Terminal Insanity.

Steven Strassmann, a senior scientist at Apple Computer. Steven received his Ph.D. from the Massachusetts Institute of Technology's Media Laboratory and is an expert on teaching good manners to computers. He instigated this book in 1992 with a call to arms on the UNIX-HATERS mailing list. He's currently working on Apple's Dylan development environment.

John Klossner, a Cambridge-based cartoonist whose work can be found littering the greater northeastern United States. In his spare time, John enjoys public transportation.

Donald Norman, an Apple Fellow at Apple Computer, Inc. and a Professor Emeritus at the University of California, San Diego. He is the author of more than 12 books including The Design of Everyday Things.

Dennis Ritchie, Head of the Computing Techniques Research Department at AT&T Bell Laboratories. He and Ken Thompson are considered by many to be the fathers of Unix. In the interest of fairness, we asked Dennis to write our Anti-Foreword.

Scott Burson, the author of Zeta C, the first C compiler for the Lisp Machine. These days he makes his living hacking C++ as a consultant in Silicon Valley. Scott wrote most of the chapter on C++.

Don Hopkins, a seasoned user interface designer and graphics programmer. Don received a BSCS degree from the University of Maryland while working as a researcher at the Human Computer Interaction Lab. Don has worked at UniPress Software, Sun Microsystems, the Turing Institute, and Carnegie Mellon University. He ported SimCity to NeWS and X11 for DUX Software. He now works for Kaleida. Don wrote the chapter on the X-Windows Disaster. (To annoy X fanatics, Don specifically asked that we include the hyphen after the letter "X," as well as the plural on the word "Windows," in his chapter title.)

Mark Lottor, who has actively hated Unix since his first Usenix conference in 1984. Mark was a systems programmer on TOPS-20 systems for eight years, then spent a few years of doing Unix system administration. Frustrated by Unix, he now programs microcontrollers in assembler, where he doesn't have to worry about operating systems, shells, compilers, or window systems getting in the way of things. Mark wrote the chapter on System Administration.

Christopher Maeda, a specialist on operating systems who hopes to have his Ph.D. from Carnegie Mellon University by the time this book is published. Christopher wrote most of the chapter on Programming.

Rich Salz is a Principal Software Engineer at the Open Software Foundation, where he works on the Distributed Computing Environment. Rich has been active on the Usenet for many years; during his multiyear tenure as moderator of comp.sources.unix he set the defacto standards for Usenet source distribution still in use. He also bears responsibility for InterNetNews, one of the most virulent NNTP implementations of Usenet. More importantly, he was twice elected editor-in-chief of his college newspaper, The Tech, but both times left school rather than serve out his term. Rich wrote the Snoozenet chapter.

In producing this book, we have used and frequently incorporated messages from Phil Agre, Greg Anderson, Judy Anderson, Rob Austein, Alan Bawden, Alan Borning, Phil Budne, David Chapman, Pavel Curtis, Mark Friedman, Jim Davis, John R. Dunning, Leonard N. Foner, Simson Garfinkel, Chris Garrigues, Ken Harrenstien, Ian D. Horswill, Bruce Howard, David H. Kaufman, Tom Knight, Robert Krajewski, James Lee Johnson, Jerry Leichter, Jim McDonald, Dave Mankins, Richard Mlynarik, Nick Papadakis, Michael A. Patton, Kent M. Pitman, Jonathan Rees, Stephen E. Robbins, M. Strata Rose, Robert E. Seastrom, Olin Shivers, Patrick Sobalvarro, Christopher Stacy, Stanley's Tool Works, Steve Strassmann, Michael Tiemann, Michael Travers, David Vinayak Wallace, David Waitzman, Dan Weinreb, Daniel Weise, John Wroclawski, Gail Zacharias, and Jamie Zawinski.

The Unix Barf Bag was inspired by Kurt Schmucker, a world-class C++ hater and designer of the infamous C++ barf bag. Thanks, Kurt.

We received advice and support from many people whose words do not appear here, including Beth Rosenberg, Dan Ruby, Alexander Shulgin, Miriam Tucker, David Weise, and Laura Yedwab.

Many people read and commented on various drafts of this manuscript. We would especially like to thank Judy Anderson, Phil Agre, Regina C. Brown, Michael Cohen, Michael Ernst, Dave Hitz, Don Hopkins, Reuven Lerner, Dave Mankins, Eric Raymond, Paul Rubin, M. Strata Rose, Cliff Stoll, Len Tower Jr., Michael Travers David Waitzman, and Andy Watson. A special thanks to all of you for making many corrections and suggestions, and finding our typos. We would especially like to thank Matthew Wagner at Waterside Productions. Matt immediately gravitated to this book in May 1992. He was still interested more than a year later when Simson took over the project from Daniel. Matt paired us up with Christopher Williams at IDG Programmers Press. Chris signed us up without hesitation, then passed us on to Trudy Neuhaus, who saw the project through to its completion. Amy Pedersen was our Imprint Manager. The UNIX-HATERS cover was illustrated by Ken Copfelt of The Stock Illustration Source.

Typographical Conventions

In this book, we use this roman font for most of the text and a different sans serif font for the horror stories from the UNIX-HATERS mailing list. We've tried to put command names, where they appear, in bold, and the names of Unix system functions in italics. There's also a courier font used for computer output, and we make it bold for information typed by the user. That's it. This isn't an unreadable and obscure computer manual with ten different fonts in five different styles. We hate computer manuals that look like they were unearthed with the rest of King Tut's sacred artifacts.

This book was typeset without the aid of troff, eqn, pic, tbl, yuc, ick, or any other idiotic Unix acronym. In fact, it was typeset using FrameMaker on a Macintosh, a Windows box, and a NeXTstation.

The UNIX-HATERS Disclaimer

In these days of large immoral corporations that compete on the basis of superior software patents rather than superior software, and that have no compunctions against suing innocent universities, we had better set a few things straight, lest they sic an idle lawyer on us:

It might be the case that every once in a while these companies allow a programmer to fix a bug rather than apply for a patent, so some of the more superficial problems we document in this book might not appear in a particular version of Unix from a particular supplier. That doesn't really matter, since that same supplier probably introduced a dozen other bugs making the fix. If you can prove that no version of Unix currently in use by some innocent victim isn't riddled with any of the problems that we mention in this volume, we'll issue a prompt apology.

Inaccuracies may have crept into our narrative, despite our best intentions to keep them out. Don't take our word for gospel for a particular flaw without checking your local Unix implementation.

Unix haters are everywhere. We are in the universities and the corporations. Our spies have been at work collecting embarrassing electronic memoranda. We don't need the discovery phase of litigation to find the memo calculating that keeping the gas tank where it is will save $35 million annually at the cost of just eight lives. We've already got that memo. And others.

Editors of "The Unix-Haters handbook", ugh@next.cambridge.ma.us
=====================================

The Worst Job in the World

Subject: The Worst Job in the World

From: Michael Tiemann <tiemann@cygnus.com>

I have a friend who has to have the worst job in the world: he is a Unix system administrator. But it's worse than that, as I will soon tell.

Being a Unix system administrator is like being a tech in a biological warfare laboratory, except that none of the substances are labeled consistently, any of the compounds are just as likely to kill you by themselves as they are when mixed with one another, and it is never clear what distinction is made between a catastrophic failure in the lab and a successful test in the field.

But I don't want to tell you about biological warfare, I want to tell you about what makes my friend's job so terrible. First, some context.

The training for Unix system administration is a frightening process. When machines start dying, users start screaming, and everything grinds to a halt, the novice feels the cold fingers of terror clutching about his heart.

 #!/bin/sh

 # this doesn't work, but no time to fix it -- hope nothing crashes

 progname=$0

But if one stays the course, one might some day achieve the dubious satisfaction of being able to mutter "at least I know why it broke!".

 #!/bin/sh

 # This works...I wonder if it will get me laid

 progname="`echo $0 | sed 's:^\./\./:\./:'`"

But there are many who must dwell in this miasma both day and night. What makes my friend's job so ugly is that he doesn't only work with just any strain of Unix -- he works with Solaris. And he doesn't just deal with just any braindead users -- his users are the executives at Sun Microsystems.

Let me tell you about Sun Microsystems. At Sun, there's a long history of executives playing pranks on one another. For April Fools, these rowdies would play tricks like putting a golf course (complete with putting green) in Scott McNealy's office, or floating Bill Joy's Ferrari in one of the landscaped ponds. Things have come a long way since then. Now every day is April Fools, and my friend doesn't like it one bit.

VP: "Admin!! What the fuck is this thing running on my machine?"

Admin: "It's Solaris, sir."

VP: "Get it off of my machine at once!"

Admin: "But sir, Ed Zander told me that you should be running Solaris now."

VP: "Zander, huh? I'll fix him. Is he running Solaris?"

Admin: "No sir."

VP: "Why not?"

Admin: "If he ran Solaris, he wouldn't be able to get any work done."

VP: "Very well, restore my machine to SunOS, and put this Solaris crap on Zander's machine."

Admin: "But sir..."

VP: "That's an order! And tell him Scott gave you the directive himself!"

Admin: "Yes, sir."

Zander: "Admin!! What the fuck is this thing running on my machine?"

Admin: "It's Solaris, sir."

Zander: "Get it off of my machine at once!"

Admin: "But sir, Scott McNealy told me that you should be running Solaris now."

Zander: "McNealy, huh? I'll fix him. Is he running Solaris?"

...

The only thing worse that being a Unix system administrator is doing the job for ungrateful users.

==

Bill Joy Quotes

· You can't prove anything about a program written in C or FORTRAN. It's really just Peek and Poke with some syntactic sugar.

· There are a couple of people in the world who can really program in C or FORTRAN. They write more code in less time than it takes for other programmers. Most programmers aren't that good. The problem is that those few programmers who crank out code aren't interested in maintaining it.

· The buzzwords of the 1980s are mips and megaflops. The buzzwords of the 1990s will be verification, reliability, and understandability.

· Xerox PARC was a great environment because they had great people, enough money to build real systems, and management that protected them from management.

· The best way to do research is to make a radical assumption and then assume it's true. For me, I use the assumption that object oriented programming is the way to go.

· At Sun, we don't believe in the Soviet model of economic planning.

· You can drive a car by looking in the rear view mirror as long as nothing is ahead of you. Not enough software professionals are engaged in forward thinking.

· The standard definition of AI is that which we don't understand.

· Questioner [whose initials are EF]: You mentioned in your talk about a catastrophic event taking place ten years from now that will depress you. Looking back, doesn't UNIX depress you? It's now 1989 and UNIX is 1968.

BJ: Standards for UNIX are coming. This will halt progress. That will provide the opportunity for something better to enter the marketplace. You see, as long as UNIX keeps slipping and makes some progress, nothing better will come along. The UNIX standards committees are therefore doing us a great service by slowing down and eventually halting the progress of UNIX.

· Generic software has absolutely no value.

· The GNU approach to software is one extreme. Of course, it violates my axiom of the top programmers demanding lots of money for their products.

· Our biggest worry at Sun is going to be managing our eventual slowdown in growth. We've gone from zero to a multi-billion dollar company without even one quarter of slowdown. That cannot continue forever. So, if we manage our slowdown without bankrupting our company, it will be a good book. If we don't do it, it will be a good book.

==

The X-Windows Disaster

This is Chapter 7 of the UNIX-HATERS Handbook. The X-Windows Disaster chapter was written by Don Hopkins.
How to make a 50-MIPS Workstation Run Like a 4.77MHz IBM PC

If the designers of X-Windows built cars, there would be no fewer than five steering wheels hidden about the cockpit, none of which followed the same principles -- but you'd be able to shift gears with your car stereo. Useful feature, that.

- Marus J. Ranum, Digital Equipment Corporation
X-Windows is the Iran-Contra of graphical user interfaces: a tragedy of political compromises, entangled alliances, marketing hype, and just plain greed. X-Windows is to memory as Ronald Reagan was to money. Years of "Voodoo Ergonomics" have resulted in an unprecedented memory deficit of gargantuan proportions. Divisive dependencies, distributed deadlocks, and partisan protocols have tightened gridlocks, aggravated race conditions, and promulgated double standards.

X has had its share of $5,000 toilet seats -- like Sun's Open Look clock tool, which gobbles up 1.4 megabytes of real memory! If you sacrificed all the RAM from 22 Commodore 64s to clock tool, it still wouldn't have enough to tell you the time. Even the vanilla X11R4 "xclock" utility consumed 656K to run. And X's memory usage is increasing.

X: The First Fully Modular Software Disaster

X-Windows started out as one man's project in an office on the fifth floor of MIT's Laboratory for Computer Science. A wizardly hacker, who was familiar with W, a window system written at Stanford University as part of the V project, decided to write a distributed graphical display server. The idea was to allow a program, called a client, to run on one computer and allow it to display on another computer that was running a special program called a window server. The two computers might be VAXes or Suns, or one of each, as long as the computers were networked together and each implemented the X protocol.

[Footnote: We have tried to avoid paragraph-length footnotes in this book, but X has defeated us by switching the meaning of client and server. In all other client/server relationships, the server is the remote machine that runs the application (i.e., the server provides services, such as database service or computational service). For some perverse reason that's better left to the imagination, X insists on calling the program running on the remote machine "the client." This program displays its windows on the "window server." We're going to follow X terminology when discussing graphical client/servers. So when you see "client" think "the remote machine where the application is running," and when you see "Server" think "the local machine that displays output and accepts user input."]

The Nongraphical GUI

X was designed to run three programs: xterm, xload, and xclock. (The idea of a window manager was added as an afterthought, and it shows.) For the first few years of its development at MIT, these were, in fact, the only programs that ran under the window system. Notice that none of these program have any semblance of a graphical user interface (except xclock), only one of these programs implements anything in the way of cut-and-paste (and then, only a single data type is supported), and none of them requires a particularly sophisticated approach to color management. Is it any wonder, then, that these are all areas in which modern X falls down?

Ten years later, most computers running X run just four programs: xterm, xload, xclock, and a window manager. And most xterm windows run Emacs! X has to be the most expensive way ever of popping up an Emacs window. It sure would have been much cheaper and easier to put terminal handling in the kernel where it belongs, rather than forcing people to purchase expensive bitmapped terminals to run character-based applications. On the other hand, then users wouldn't get all of those ugly fonts. It's a trade-off.

The Motif Self-Abuse Kit

X gave Unix vendors something they had professed to want for years: a standard that allowed programs built for different computers to interoperate. But it didn't give them enough. X gave programmers a way to display windows and pixels, but it didn't speak to buttons, menus, scroll bars, or any of the other necessary elements of a graphical user interface. Programmers invented their own. Soon the Unix community had six or so different interface standards. A bunch of people who hadn't written 10 lines of code in as many years set up shop in a brick building in Cambridge, Massachusetts, that was the former home of a failed computer company and came up with a "solution:" the Open Software Foundation's Motif.

What Motif does is make Unix slow. Real slow. A stated design goal of Motif was to give the X Window System the window management capabilities of HP's circa-1988 window manager and the visual elegance of Microsoft Windows. We kid you not.

Recipe for disaster: start with the Microsoft Windows metaphor, which was designed and hand coded in assembler. Build something on top of three or four layers of X to look like Windows. Call it "Motif." Now put two 486 boxes side by side, one running Windows and one running Unix/Motif. Watch one crawl. Watch it wither. Watch it drop faster than the putsch in Russia. Motif can't compete with the Macintosh OS or with DOS/Windows as a delivery platform.

Ice Cube: The Lethal Weapon

One of the fundamental design goals of X was to separate the window manager from the window server. "Mechanism, not policy" was the mantra. That is, the X server provided a mechanism for drawing on the screen and managing windows, but did not implement a particular policy for human-computer interaction. While this might have seemed like a good idea at the time (especially if you are in a research community, experimenting with different approaches for solving the human-computer interaction problem), it can create a veritable user interface Tower of Babel.

If you sit down at a friend's Macintosh, with its single mouse button, you can use it with no problems. If you sit down at a friend's Windows box, with two buttons, you can use it, again with no problems. But just try making sense of a friend's X terminal: three buttons, each one programmed a different way to perform a different function on each different day of the week -- and that's before you consider combinations like control-left-button, shift-right-button, control-shift-meta-middle-button, and so on. Things are not much better from the programmer's point of view.

As a result, one of the most amazing pieces of literature to come out of the X Consortium is the "Inter Client Communication Conventions Manual," more fondly known as the "ICCCM", "Ice Cubed," or "I39L" (short for "I, 39 letters, L"). It describes protocols that X clients ust use to communicate with each other via the X server, including diverse topics like window management, selections, keyboard and colormap focus, and session management. In short, it tries to cover everything the X designers forgot and tries to fix everything they got wrong. But it was too late -- by the time ICCCM was published, people were already writing window managers and toolkits, so each new version of the ICCCM was forced to bend over backwards to be backward compatible with the mistakes of the past.

The ICCCM is unbelievably dense, it must be followed to the last letter, and it still doesn't work. ICCCM compliance is one of the most complex ordeals of implementing X toolkits, window managers, and even simple applications. It's so difficult, that many of the benefits just aren't worth the hassle of compliance. And when one program doesn't comply, it screws up other programs. This is the reason cut-and-paste never works properly with X (unless you are cutting and pasting straight ASCII text), drag-and-drop locks up the system, colormaps flash wildly and are never installed at the right time, keyboard focus lags behind the cursor, keys go to the wrong window, and deleting a popup window can quit the whole application. If you want to write an interoperable ICCCM compliant application, you have to crossbar test it with every other application, and with all possible window managers, and then plead with the vendors to fix their problems in the next release.

In summary, ICCCM is a technological disaster: a toxic waste dump of broken protocols, backward compatibility nightmares, complex nonsolutions to obsolete nonproblems, a twisted mass of scabs and scar tissue intended to cover up the moral and intellectual depravity of the industry's standard naked emperor.

Using these toolkits is like trying to make a bookshelf out of mashed potatoes.

- Jamie Zawinski
X Myths

X is a colletion of myths that have become so widespread and so prolific in the computer industry that many of them are now accepted as "fact," without any thought or reflection.

Myth: X Demonstrates the Power of Client/Server Computing

At the mere mention of network window systems, certain propeller gheads who confuse technology with economics will start foaming at the mouth about their client/server models and how in the future palmtops will just run the X server and let the other half of the program run on some Cray down the street. They've become unwitting pawns in the hardware manufacturers' conspiracy to sell newer systems each year. After all, what better way is there to fore suers to upgrade their hardware than to give them X, where a single application can bog down the client, the server, and the network between them, simultaneously!

The database client/server model (the server machine stores all the data, and the clients beseech it for data) makes sense. The computation client/server model (where the server is a very expensive or experimental supercomputer, and the client is a desktop workstation or portable computer) makes sense. But a graphical client/server model that slies the interface down some arbitrary middle is like Solomon following through with his child-sharing strategy. The legs, heart, and left eye end up on the server, the arms and lungs go to the client, the head is left rolling around on the floor, and blood spurts everywhere.

The fundamental problem with X's notion of client/server is that the proper division of labor between the client and the server can only be decided on an application-by-application basis. Some applications (like a flight simulator) require that all mouse movement be sent to the application. Others need only mouse clicks. Still others need a sophisticated combination of the two, depending on the program's state or the region of the screen where the mouse happens to be. Some programs need to update meters or widgets on the screen every second. Other programs just want to display clocks; the server could just as well do the updating, provided that there was some way to tell it to do so.

The right graphical client/server model is to have an extensible server. Application programs on remote machines can download their own special extension on demand and share libraries in the server. Downloaded code can draw windows, track input eents, provide fast interactive feedback, and minimize network traffic by communicating with the application using a dynamic, high-level protocol.

As an example, imagine a CAD application built on top of such an extensible server. The application could download a program to draw an IC and associate it with a name. From then on, the client could draw the IC anywhere on the screen simply by sending the name and a pair of coordinates. Better yet, the client an download programs and data structures to draw the whole schematic, which are called automatically to refresh and scroll the window, without bothering the client. The user can drag an IC around smoothly, without any network traffic or context switching, and the server sends a single message to the client when the interaction is complete. This makes it possible to run interactive clients over low-speed (that is, slow-bandwidth) communication lines.

Sounds like science fiction? An extensible window server was precisely the strategy taken by the NeWS (Network extensible Window System) window system written by James Gosling at Sun. With such an extensible system, the user interfae toolkit becomes an extensible server library of classes that clients download directly into the server (the approach taken by Sun's TNT Toolkit). Toolkit objects in different applications share common objects in the server, saving both time and memory, and reating a look-and-feel that is both consistent aross applications and customizable. With NeWS, the window manager itself was implemented inside the server, eliminating network overhead for window manipulation operations -- and along with it the race conditions, context switching overhead, and interaction problems that plague X toolkits and window manager.

Ultimately, NeWS was not economically or politically viable because it the very problems that X was designed to create.

Myth: X Makes Unix "Easy to Use"

Graphical interfaces can only paper over misdesigns and kludges in the underlying operating system; they can't eliminate them.

The "drag-and-drop" metaphor tires to cover up the Unix file system, but so little of Unix is designed for the desktop metaphor that it's just one kludge on top of another with little holes and sharp edges popping up everywhere. Maybe the "sag-and-drop" metaphor is more appropriate for such ineffective and unreliable performance.

A shining example is Sun's Open Windows File Manager, which goes out of its way to display ore dump files as cute little red bomb icons. When you double-click on the bomb, it runs a text editor on the core dump. Harmless, but not very useful. But if you intuitively drag and drop the bomb on the DBX Debugger Tool, it does exactly what you'd expect if you were a terrorist: it ties the entire system up, as the core dump (including a huge unmapped gap of zeros) is pumped through the server and into the debugger text window, which inflates to the maximum capacity of swap space, then violently explodes, dumping an even bigger core file in place of your original one, filling up the entire file system, overwhelming the file server, and taking out the File Manager with shrapnel. (This bug has since been fixed.)

But that's not all: the File Manager puts even more power at your fingertips if you run it as root! When you drag and drop a directory onto itself, it beeps and prints "rename: invalid argument" at the bottom of the window, then instantly deletes the entire directory trwe without bothering to update the graphical directory browser.

The following message illustrates the X approach to "seurity through obscurity":

Date: Wed, 30 Jan 91 15:35:46 -0800

From: David Chapman <zvona@gang-of-four.stanford.edu>

To: UNIX-HATERS

Subject: MIT-MAGIC-COOKIE-1

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

Anybody who has ever used X knows that Chapman's error was trying to use xauth in the first place. he should have known better. (Blame the victom, not the program.)

From: Olin Shivers <shivers@bronto.soar.cs.cmu.edu>

Date: Wed, 30 Jan 91 23:49:46 EST

To: ian@ai.mit.edu

Cc: zvona@gang-of-four.stanford.edu, UNIX-HATERS

Subject: MIT-MAGIC-COOKIE-1

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

Myth: X Is "Customizable"

...And so is a molten blob of pig iron. But it's getting better; at least now you don't hasve to use your bare hands. Hewlett-Packard's Visual User Environment is so cutting-edge that it even has an icon you can click on to bring up the resource manager: it pops up a vi on your .Xdefaults file! Quite a labor-saving contraption, as long as you're omniscient enough to understand X defaults and archaic enough to use vi. The following message describes the awesome flexibility and unbounded freedom of expression that X defaults fail to provide.

Date: Fri, 22 Feb 91 08:17:14 -0800

From: beldar@ips.com (Gardner Cohen)

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

Myth: X Is "Portable"

...And Iran-Contra wasn't Arms for Hostages.

Even if you can get an X program to compile, there's no guarantee it'll work with your server. If an application requires an X extension that your server doesn't provide, then it fails. X applications can't extend the server themselves -- the exten sion has to be compiled and linkekd into the server. Most interesting extensions actually require extensive modification and recompilation of the X server itself, a deidedly nontrivial task. the e tells how much brain-searing, eye-popping fun compiling "portable" X server extensions can be:

Date: Wed 4 Mar 92 02:53:53 PST

X-Windows: Boy, Is my Butt Sore

From: Jamie Zawinski [jwz@lucid.com]

To: UNIX-HATERS

Subject: X: or, How I Learned to Stop Worring and Love the Bomb

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

On the whole, X extensions are a failure. The ntable exception that proves the rule is the Shaped Window extension, which was specifically designed to implement round clocks and eyeballs. But most application writers just don't bother using proprietarty extensions like Display PostScript, because X terminals and MIT servers don't support them. Many find it too much of a hassle to use more ubiquitous extensions like shared memory, double buffering, or splines: they still don't work in many cases, so you have to be prepared to do without them. If you really don't need the extension, then why complicate your code wioth the special cases? And most applications that do use extensions just assume they're supported and bomb if they're not.

The most that can be said about the lowest-common-denominator approach that X takes to graphics is that it levels the playing field, allowing incredidibly stupid companies to jump on the bandwaon and sell obsolete junk that's just as unusable as high-end brand-name workstations:

Date: Wed 10 Apr 91 08:14:16 EDT

From: Steve Strassmann <straz@media-lab.mit.edu>

To: UNIX-HATERS

Subject: the display from hell

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

Myth: X is "Device Independent"

X is extremely device dependent because all X graphics are specified in piel coordinates. graphics drawn on different resulution screens come out at different sizes, so you have to scale all the coordinates yourself if you want to draw at a ertain size. N ot all screens een have square pixels: unless you don't mind rectangular squares and oval circles, you also have to adjust all coordinates according to the pixel aspect ratio.

A task as simple as filing and stroking shapes is quite complicated because of X's bizarre pixel-oriented imaging rules. When you fill a 10x10 square with XFillRectangle, it fills the 100 pixels you expect. But you get extra "bonus pixels" when you pass the same arguments to XDrawRectangle, because it actually draws an 11x11 square, hanging out one pixel below and to the right!!! If you find this hard to believe, look it up in the X manual yourself: Volume 1, Section 6.1.4. The manual patronizingly explains how easy it is to add 1 to the x and y position of the filled rectangle, while subtracting 1 from the width and height to compensate, so it fits neatly inside the outline. Then it points out that "in the case of arcs, however, this is a much more difficult proposition (probably impossible in a portable fashion)." This means that portably filling and stroking an arbitrarily scaled arc without overlapping or leaving gaps is an intractable problem when using the X Window System. Think about that. You can't even draw a proper rectangle with a thick outline, since the line width is specified in unscaled pixel units, so if your display has rectangular pixels, the vertical and horizontal lines will have different thicknesses enen though you scaled the rectangle corner coordinates to compensate for the aspect ratio.

The color situation is a total flying circus. The X approach to device independence is to treat everything like a MicroVAX framebuffer on acid. A truly portable X application is required to act like the persistent customer in Monty Python's "Cheese Shop" sketch, or a grail seeker in "Monty Python and the Holy Grail." Even the simplest applications must answer many difficult questions:

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

X Graphics: Square Peg in a Round Hole

Programming X-Windows is like trying to find the square root of pi using roman numerals.

- Unknown
The PostScript imaging model, used by NeWS and Display PostScript, solves all these horrible problems in a high-level, standard, device independent manner. NeWS has integrated extensions for input, lightweight processes, networking, and windows. It can draw and respond to input in the same arbitrary coordinate system and define window shapes with PostScript paths. The Display PostScript extension for X is intended for output only and doesn't address any window system issues, which must be dealt with through X. NEXTSTEP is a toolkit written in Objective-C, on top of NeXT's own window server. NEXTSTEP uses Display PostScript for imaging, but not for input. It has an excellent imaging model and well designed toolkit, but the Display PostScript server is not designed to be programmed with interactive code: instead all events are sent to the client for processing, and the toolkit runs in the client, so it does not have the low bandwidth, context-switching, and code-sharing advantages of NeWS. Nevertheless, it is still superior to X, which lacks the device-independent imaging model.

On the other hand, X's spelling has remained constant over the years, while NeXT has at various times spelled their flagship product "NextStep," "NeXTstep," NeXTStep," "NeXTSTEP," "NEXTSTEP", and finally "OpenStep." A standardized, consistent spelling is certainly easier on the marketing 'droids.

Unfortunately, NeWS an d NEXTSTEP were political failures because they suffer from the same two problems: oBNoXiOuS capitalization, and Amiga Persecution Attitude(TM).

X: On the Road to Nowhere

X is just so stupid, why do people use it? Beats us. Maybe it's because they don't have a choice. (See Figure 2)

Nobody really wants to run X: what they do want is a way to run several applications at the same time using a large screen. If you want to run Unix, it's either X or a dumb character-based terminal.

Pick your poison.

Figure 2. Distributed at the X-Windows Conference

Official Notie, Post Immediately

X: Dangerous Virus

[You're going to have to buy the UNIX-HATERS Handbook to read this one -- it's funny but long so I'm not going to type it in.]

Don Hopkins is a seasoned user interface designer and graphics programmer. Don received a BSCS degree from the University of Maryland while working as a researcher at the Human Computer Interaction Lab. Don has worked at UniPress Software, Sun Microsystems, the Turing Institute, and Carnegie Mellon University. He ported SimCity to NeWS and X11 for DUX Software. He now workes for Kaleida. Don wrote the chapter on the X-Windows Disaster. (To annoy X fanatics, Don specifically asked that we include the hyphen after the letter "X,", as well as the plural of the word "Windows," in his chapter title.)

=======================================

MOTIF ANGST PAGE

If you have any ANGSTFUL Motif code, comments, documentation, or resources, please share them with me! Here is some of the stronger stuff I've found. Note: this is only for official Open Software Foundation Motif inspired Angst. If you're experiencing TCL/Tk That Only Looks Like Motif But Doesn't Suck Angst, then you should stop whining and fix the problem yourself, if somebody else hasn't already.

/* Note that the text callbacks are "weird" in that they expect values in the callback structure to be set inside the callback proc to determine what actions need to be taken after the callbackproc returns. In particular, the XmTextVerifyCallbackStruct's 'doit' slot is always set to True, and must be set to False if the callbackproc doesn't want the action to be taken. To do this, Set_Call_Data_For_XmTextVerifyCallbackStruct() is called by Wcb_Meta_Callbackproc() after the callback lisp code is evaluated, and the values bound to these settable variables are set inside call_data....

Another inconsistency with the Text widget is that some callbacks on this widget return XmAnyCallbackStruct's (XmNactivateCallback, XmNfocusCallback, XmNvalueChangedCallback), whereas XmNlosingFocusCallback, XmNmodifyVerifyCallback, and XmNmotionVerifyCallback return XmTextVerifyCallbackStruct. In the code below, we look at the 'reason' slot of the call data, (which is present in both XmAnyCallbackStruct and in XmTextVerifyCallbackStruct) to determine the kind of callback that occured and we only bind the values that are appropriate for that kind of callback. Information about which slots are valid for particular callback was taken from the documentation on the XmText(3X) widget, and verified against the Motif 1.1 source -- this is valid for both XmText and XmTextField widgets... */

static LVAL s_CALLBACK_CUR_INSERT, s_CALLBACK_NEW_INSERT, s_CALLBACK_START_POS, s_CALLBACK_END_POS, s_CALLBACK_TEXT;

static void Lexical_Bindings_For_XmTextVerifyCallbackStruct(bindings_list,

 lexical_env,

 call_data,

 client_data)

 LVAL bindings_list;
/* a list of symbols to which values from XmTextVerifyCallbackStruct are bound */

 LVAL lexical_env;

 XtPointer call_data;

 LVAL client_data;

/* XLTYPE_CALLBACKOBJ */

{

 extern LVAL true;

 register LVAL s_bindname;

 XmTextVerifyCallbackStruct* cd;

 /* How long can this go on???? */

}

/***

 * As far as I can tell, the only settable field in the Text widget's call_data

 * is the doit field. Of course, the documentation and the source are quite

 * cryptic about this!

 **/

static void Set_Call_Data_For_XmTextVerifyCallbackStruct(lexical_env, call_data)

 LVAL lexical_env;

 XtPointer call_data;

{

 register LVAL ep;

 /* Note: Wcb_Meta_Callbackproc() won't call this proc if call_data==NULL */

 switch (((XmAnyCallbackStruct*) call_data)->reason) {

 case XmCR_LOSING_FOCUS:
/* valid XmTextVerifyCallbackStruct fields: reason, event, doit, currInsert, newInsert, startPos, endPos */

 case XmCR_MODIFYING_TEXT_VALUE: /* valid XmTextVerifyCallbackStruct fields: reason, event, doit, currInsert, newInsert, text, startPos, endPos */

 case XmCR_MOVING_INSERT_CURSOR: /* valid XmTextVerifyCallbackStruct fields: reason, event, currInsert, newInsert, doit */

 for (ep = car(lexical_env); /* get current environment stack frame which was created in Wcb_Meta_Callbackproc() by Lexical_Bindings_For_XmTextVerifyCallbackStruct(). */

 (ep != NIL); ep = cdr(ep)) /* while there are more bindings in current environment */

 if (s_CALLBACK_DOIT == car(car(ep))) { /* check to see if this symbol was bound in the envt */

((XmTextVerifyCallbackStruct*) call_data)->doit = ((cdr(car(ep)) != NIL) ? TRUE : FALSE); /* set doit field if value is non-NIL */

return;

 }

 break;

 default:

/* do nothing for most cases... */

 break;

 }

}

/***/

static LVAL Cvt_XmRXmString_to_LVAL(res_val, resource)

 GetValues_Union res_val;

 Resource_Instance* resource;

{

#ifdef WINTERP_MOTIF_11

#ifdef WINTERP_MOTIF_111
/* MOTIF 1.1.1 version */

 /*

 * Motif 1.1.1 documentation claims that XmStrings retrieved via XtGetValues()

 * are copies of the internal resource value, and that XmStringFree() must be

 * called by the application to free the copyied value. In WINTERP, by passing

 * the XmString pointer to cv_xmstring, we can be assured that the lisp-XmString

 * will get freed upon garbage collection when the node is no longer referenced.

 */

 return (res_val.XtPointer_value ? cv_xmstring((XmString) res_val.XtPointer_value) : NIL);

#else

/* MOTIF 1.1 version */

 /*

 * Motif 1.1's README states:

 * | Compound String Resources Inconsistently Copied

 * |

 * | In this release, XtGetValues for a resource whose value is a

 * | compound string sometimes does and sometimes does not copy

 * | the returned string. Following is a list of some known

 * | resources whose XmString values are not copied (this list

 * | may not be exhaustive):

 * |

 * | XmBulletinBoard XmNdialogTitle

 * | XmFileSelectionBox XmNdirectory

 * | XmNnoMatchString

 * | XmRowColumn XmNlabelString

 * | XmScale XmNtitleString

 *

 * Handling the above would require special casing for all XmRString resources,

 * which I don't have time to do. They fixed this stupidity in 1.1.1 (see above),

 * but certainly in a suboptimal fashion -- yet more wasteful copying occurs because

 * all widgets copy their internal XmStrings upon XtGetValues().

 *

 * The upshot of all this is that for Motif 1.1 (but not 1.1.1), there will be a memory

 * leak in XtGetValues() on XmString resources that copy the internal resource value.

 * We must make a copy here because it would be worse to XmStringFree() resources that

 * returned a pointer whose memory was managed by Motif.

 */

 return (res_val.XtPointer_value ? cv_xmstring(XmStringCopy((XmString) res_val.XtPointer_value)) : NIL);

#endif /* WINTERP_MOTIF_111 */

#else

/* MOTIF 1.0 version */

 /*

 * In Motif 1.0, XmStrings() returned via XtGetValues() were temporary pointers

 * that has to be copied via XmStringCopy()...

 */

 return (res_val.XtPointer_value ? cv_xmstring(XmStringCopy((XmString) res_val.XtPointer_value)) : NIL);

#endif /* WINTERP_MOTIF_11 */

}

/* This is so totally ridiculous: there's NO WAY to tell Motif that *any* button can select a menu item. Only one button can have that honor. */

/* If this function looks like it does a lot more work than it needs to, you're right. Blame the Motif scrollbar for not being smart about updating its appearance. */

static void

xm_update_scrollbar (widget_instance *instance, Widget widget,

 widget_value *val)

{

 if (val->scrollbar_data)

 {

 scrollbar_values *data = val->scrollbar_data;

 Dimension height, width, pane_minimum, pane_maximum;

 Dimension pos_x, pos_y;

 int widget_sliderSize, widget_val;

 int new_sliderSize, new_value;

 double percent;

 double h_water, l_water;

 XtVaGetValues (widget,

 XmNheight, &height,

 XmNwidth, &width,

 XmNx, &pos_x,

 XmNy, &pos_y,

 XmNpaneMinimum, &pane_minimum,

 XmNpaneMaximum, &pane_maximum,

 XmNsliderSize, &widget_sliderSize,

 XmNvalue, &widget_val,

 0);

 /*

 * First size and position the scrollbar widget.

 */

 if (height != data->scrollbar_height || pos_y != data->scrollbar_pos)

{

 XtConfigureWidget (widget, pos_x, data->scrollbar_pos,

 width, data->scrollbar_height, 0);

 /* Force the manager to recompute the positioning. */

 XtVaSetValues (widget, XmNrefigureMode, False, 0);

 XtVaSetValues (widget, XmNrefigureMode, True, 0);

}

 /* pane_min should always equal pane_max */

 if (pane_minimum != data->scrollbar_height)

XtVaSetValues (widget,

 XmNpaneMinimum, data->scrollbar_height,

 XmNpaneMaximum, data->scrollbar_height, 0);

 /*

 * Now the size the scrollbar's slider.

 */

 percent = (double) data->slider_size /

(double) (data->maximum - data->minimum);

 new_sliderSize = (int) ((double) (INT_MAX - 1) * percent);

 percent = (double) (data->slider_position - data->minimum) /

(double) (data->maximum - data->minimum);

 new_value = (int) ((double) (INT_MAX - 1) * percent);

 if (new_sliderSize > (INT_MAX - 1))

new_sliderSize = INT_MAX - 1;

 if (new_sliderSize < 1)

new_sliderSize = 1;

 if (new_value > (INT_MAX - new_sliderSize))

new_value = INT_MAX - new_sliderSize;

 else if (new_value < 1)

new_value = 1;

 h_water = 1.05;

 l_water = 0.95;

 if (new_sliderSize != widget_sliderSize || new_value != widget_val)

{

 int force = ((INT_MAX - widget_sliderSize - widget_val)

 ? 0

 : (INT_MAX - new_sliderSize - new_value));

 if (force

 || (double)new_sliderSize < (l_water * (double)widget_sliderSize)

 || (double)new_sliderSize > (h_water * (double)widget_sliderSize)

 || (double)new_value < (l_water * (double)widget_val)

 || (double)new_value > (h_water * (double)widget_val))

 {

 XmScrollBarSetValues (widget, new_value, new_sliderSize, 1, 1,

 False);

 }

}

 }

}

#if (XmVersion >= 1002)

define ARMANDACTIVATE_KLUDGE

define DND_KLUDGE

#endif

#ifdef ARMANDACTIVATE_KLUDGE

 /* We want typing Return at a dialog box to select the default button; but

 we're satisfied with having it select the leftmost button instead.

 In Motif 1.1.5 we could do this by putting this resource in the

 app-defaults file:

*dialog*button1.accelerators:#override\

<KeyPress>Return: ArmAndActivate()\n\

<KeyPress>KP_Enter: ArmAndActivate()\n\

Ctrl<KeyPress>m: ArmAndActivate()\n

 but that doesn't work with 1.2.1 and I don't understand why. However,

 doing the equivalent C code does work, with the notable disadvantage that

 the user can't override it. So that's what we do until we figure out

 something better....

 */

static char button_trans[] = "\

<KeyPress>Return: ArmAndActivate()\n\

<KeyPress>KP_Enter: ArmAndActivate()\n\

Ctrl<KeyPress>m: ArmAndActivate()\n";

#endif /* ARMANDACTIVATE_KLUDGE */

#ifdef DND_KLUDGE

 /* This is a kludge to disable drag-and-drop in dialog boxes. The symptom

 was a segv down in libXm somewhere if you used the middle button on a

 dialog box to begin a drag; when you released the button to make a drop

 things would lose if you were not over the button where you started the

 drag (canceling the operation). This was probably due to the fact that

 the dialog boxes were not set up to handle a drag but were trying to do

 so anyway for some reason.

 So we disable drag-and-drop in dialog boxes by turning off the binding for

 Btn2Down which, by default, initiates a drag. Clearly this is a shitty

 solution as it only works in default configurations, but...

 */

static char disable_dnd_trans[] = "<Btn2Down>: ";

#endif /* DND_KLUDGE */

/* sets the parent window to 0 to fool Motif into not generating a grab */

#ifdef USE_MOTIF

 /* The menu.font_list slot came from the *fontList resource (Motif standard.)

 The menu.font_list_2 slot came from the *font resource, for backward

 compatibility with older versions of this code, and consistency with the

 rest of emacs. If both font and fontList are specified, we use font.

 If only one is specified, we use that. If neither are specified, we

 use the "fallback" value. What a kludge!!!

 Note that this has the bug that a more general wildcard like "*fontList:"

 will override a more specific resoure like "Emacs*menubar.font:". But

 I can't think of a way around that.

 */

 if (mw->menu.font_list)
 /* if *fontList is specified, use that */

 ;

 else if (mw->menu.font_list_2) /* else if *font is specified, use that */

 mw->menu.font_list = mw->menu.font_list_2;

 else

 /* otherwise use default */

 mw->menu.font_list = mw->menu.fallback_font_list;

#endif

/*

 * This is a horrible function which should not be needed.

 * use it to put the resize method back the way the XlwMenu

 * class initializer put it. Motif screws with this when

 * the XlwMenu class gets instantiated.

 */

void

xlw_unmunge_class_resize(Widget w) {

 if (w->core.widget_class->core_class.resize != XlwMenuResize)

 w->core.widget_class->core_class.resize = XlwMenuResize;

}

Date: 19 Jan 90 09:53:11 GMT

From: umich!umeecs!anon@yale-zoo.arpa (Omar S. Juma)

Subject: Re: To UIL or not to UIL?

To: xpert@expo.lcs.mit.edu

In article <11658.632634712@hplnpm> mayer%hplnpm@HPLABS.HPL.HP.COM (Niels P. Mayer) writes:

[Heavily edited]

>

> ...rumor... ...UIL...

> ...didn't meet HP's quality...

> ...poop...

> ...UIL SUCKS... ...silly...

>...buggy... ...inelegant...

> ...doesn't make life... ...easier...

>...completely nonstandard...

>

I absolutely agree. I've only had 4 years of serious software experience, and UIL is the ***worst*** language/compiler combination I have ever seen. Nothing, not even working with punch cards, has left me with a more bitter taste in my mouth. If UIL were a car, not even the Russians would want to manufacture it. If UIL were a--but, wait a minute, let's be objective for a minute:

· The UIL compiler does not invoke cpp before it starts its journey. Yo, DEC!!! Even xrdb uses cpp. There are several advantages to using cpp. Hey, guys, ever heard of macros? Huh? What's that you say? You wanted to create your own macro facility? Oh, I see, in the next version. When's that? Huh? Next year? Oh. But what do we do in the meantime? Huh? Did you say "copy and paste"? Isn't that kind of inelegant? I tried that. It bloated the simplest UIL files to thousands of lines. What? Yeah, thousands, not hundreds. Made them difficult to edit. Huh? Split the files, you said? I dunno, that's kind of old-fashioned, rather stupid. Say what? I can run the file through cpp first? Yeah, I tried that, in fact, since I had no intention of wading through huge UIL files; it gave me vertigo. Huh? You want to know how that worked, you say? Well, I ran into this problem, see. After I did a few nice macros and got ready and all, I ran the UIL compiler. I got this strange error message. It told me that maximum line length was 132 characters. Huh? Well, see, some of my macros were rather long, like 140 characters, see, and I couldn't make them less than 132 short of compressing all the whitespace out of the macro and turning it into one huge token. Huh? You never thought anyone would ever write macros bigger than 132 characters? Oh, well, I did. [Quiz of the decade: Where did DEC come up with 132? What, is it 128 and a bit?]

· Defective error reporting. What do I mean by defective? Like, it's almost impossible to figure out what the UIL compiler means when it complains about something. Like, if you forget a semicolon someplace, the compiler pukes into its own food, eats it back again, and pukes it out again, and just gets totally ill, dude.

· Documentation. Huh? Did someone say documentation?

· Language design. Whoever designed UIL must have been heavily involved in BASIC and FORTRAN, because that's as sophisticated as it ever gets. The language is extremely simple-minded. No conditional processing. No interface actions. No anything. All UIL offers is a substitute to writing out almost the exact same stuff in a C program. Yes, I know that writing it in C would be even more time-consuming, but there I have access to powerful macros and procedural mechanisms, not to mention conditional processing, that can make life easier. Any intelligence in the interface must be performed in the program anyway; you can't delegate any actions to the UIL portion, as Niels says. Which brings me to wonder why OSF never gave Open Dialogue any serious consideration (please, don't tell me about "demonstration technology"). If not the entire Open Dialogue system, then at least the language, which was several generations ahead of UIL. My personal impression is that DEC shoved UIL down OSF's throat as its "contribution", though in effect all it's done is cause people to waste inordinate amounts of time and effort creating workarounds.

· Scale. You really cannot write a serious application using UIL and its compiler. The mechanism simply cannot handle the sheer volume of text required to describe the interface. You need an intermediate agent, and OSF just didn't think it was necessary to supply one. I would have settled for preinvoking cpp, but even that is not enough.

· Elegance. If you try to develop an application using creation callbacks and the other standard mechanisms supplied by OSF, you will end up with a horrendous piece of noodle code on your hands. UIL lends itself very well to kludgy solutions; I tried hard to extricate myself from all this mess, but it was not possible unless I adopted several coding and pre-compilation standards. In essence, I've spent the better part of two months fighting the UIL mechanism, trying to create a logical framework around which I can develop several large applications, and I'm getting close to completely throwing in the towel and starting from scratch with WINTERP. I've looked everywhere, and all I see is square pegs that have been shoved and squeezed into round holes. You can't go very far with such a setup.

· Extensibility. Are you kidding me? Extend UIL? I'd rather go gene splicing than try to tack on more crud to UIL. DEC has supplied what can be generously called as an embryonic extension mechanism. It's badly documented, and from what I've seen by wading through the code, they never really thought anyone would want to extend it. Like, dude, there's everything you'll ever need there anyway, so why bother?

I'm really sorry to be saying all of this, but UIL is not a solution. Unfortunately, unless OSF is willing to break with tradition and supply a completely different mechanism for the next release of Motif, we are stuck with UIL for quite a while. Which means we will all waste more time and energy coming up with solutions. Here's some alternatives:

· Create a wrapper around UIL. Bury it under a ton of macros, processing languages, prepackaged C code. Then it may be possible to develop an interactive interface editor that uses these mechanisms. This is what I'm currently trying to do, but as I said, I'm thinking of giving it up.

· Get the format for UID files and develop your own UIL language and compiler. This is fairly time-intensive, but offers the chance to start from zero and build the system correctly.

· Use WINTERP. I'm just not sure about this now, but it's starting to make more and more sense.

· Use LISP entirely. Don't even bother with C, C++, Pascal, FORTRAN, or anything similar. Start with LISP. Develop everything in LISP. This seems to be the most intuitive alternative, but it requires ***a lot*** of work. And it's not entirely portable, at least not yet.

I could go on...

anon@eecs.umich.edu

...anon...

Date: 27 Mar 90 13:36:06 GMT

From: alphalpha!nazgul@bloom-beacon.mit.edu (Kee Hinckley)

Subject: Re: UIL or NOT to UIL

To: xpert@expo.lcs.mit.edu

I tried to reply directly to this, but auto-trol.com doesn't seem to be around, so...

In article <792@auto-trol.UUCP> marbru@auto-trol.COM (Martin Brunecky) writes:

For your case I'd need a more generic one, specifying widget ID to to set. Easy to do. I did not think of one, since to accomplish your task we have WsMatrixBox, which does all you need with 2-3 resources, without all that ugly code.

I don't suppose WsMatrixBox is available anywhere?

With the X resource database, there is no problem, since the "hidden" widget always has a name (somehow constructed by the confusion routine). And since there is a name, and a known place in widget hierarchy, you can define any resources you wish.

Ugh. Not your fault, but ugh nonetheless.

Incidentally. OSF did at one point consider using an extended Xresources form as an alternative to UIL, but was convinced (I forget the exact reasons) that it wasn't appropriate (too hacky?).

Wasn't the real reason some OSF member was already using UIL and wanted to make it a "standard" ?

Keep in mind these are my opinions and mine alone, based on my view as part of the team that "created" Motif.

There is no question in my mind that had OSF not chosen UIL, an "OSF Member" would have been upset. The results of that, I don't know - it didn't come to that. My feeling, and what I believe the consensus to have been, was that UIL, while by no means perfect or even correct, was a step in the right direction. I also felt (and I regret not examining the code more throughly in the hour or so I had it) that it could be fixed, and that no better, timely (e.g. Open Dialogue was potentially not timely (in retrospect I know that is wrong, it could have been there, but...)), solution existed. Given that something like it seemed necessary, both as a transfer language for IDTs (something the membership wanted), and as a means for supporting internationalization, it was decided that it should be included but not placed in the AES (Application Environment Specification) - in other words, the specification of UIL is open for change in the future. I, at least, was under the impression that work would begin to correct these problems as soon as Motif was released. In fact, there were several possible approaches bandied about for what the new UIL would look like and who would do the work.

In my opinion OSF dropped the ball here, and frankly I feel somewhat betrayed, since what we worked out was a compromise and I feel it was tossed as soon as the transition team left. I should point out however, that I don't think, given my knowledge of the people who are at OSF, that this was done for political reasons. I suspect it has been more a matter of manpower and priorities. I do think that it's extremely regretable however, since the number of programs using UIL is (as I was afraid) increasing rapidly, and any viable UIL replacement now must support seamless translation to and from UIL files.

-kee

==

Official Notice, Post Immediately

 X x

 X x

 X x

 X

 x X

 x X

 x X

Dangerous Virus!

First, a little history. The X window system escaped from Project Athena at MIT where it was being held in isolation. When notified, MIT stated piblicly that "MIT assumes no resonsibility...". This is a very disturbing statement. It then infiltrated Digital Equipment Corporation, where it has since corrupted the technical judgement of this organization.

After sabotaging Digital Equipment Corporation, a sinister X consortium was created to find a way to use X as part of a plan to dominate and control interactive window systems. X windows is sometimes distributed by this secret consortium free of charge to unsuspecting victims. The destructive cost of X cannot even be guessed.

X is truly obese - whether it's mutilating your hard disk or actively infesting your system, you can be sure it's up to no good. Innocent users need to be protected from this dangerous virus. Even as you read this, the X source distribution and the executable environment is being maintained on hundreds of computers, maybe even your own.

Digital Equipment Corporation is already shipping machines that carry this dreaded infestation. It must be destroyed.

This is what happens when software with good intentions goes bad. It victimizes innocent users by distorting their perception of what is and what is not good software. This malignant window system must be destroyed.

Ultimately DEC and MIT must be held accountable for this heinous *software crime*, brought to justice, and made to pay for a *software cleanup*. Until DEC and MIT answer to these charges, they both should be assumed to be protecting dangerous software criminals.

Don't be fooled! Just say no to X.

X windows. A mistake carried out to perfection. X windows. Dissatisfaction guaranteed. X windows. Don't get frustrated without it. X windows. Even your dog won't like it. X windows. Flaky and built to stay that way. X windows. Complex nonsolutions to simple nonproblems. X windows. Flawed beyond belief. X windows. Form follows malfunction. X windows. Garbage at your fingertips. X windows. ignorance is our most important resource. X windows. It could be worse, but it'll take time. X windows. It could happen to you. X windows. Japan's secret weapon. X windows. Let it get in *your* way. X windows. Live the nightmare. X windows. More than enough rope. X windows. Never had it, never will. X windows. No hardware is safe. X windows. Power tools for power fools. X windows. Power tools for power losers. X windows. Putting new limits on productivity. X windows. Simplicity made complex. X windows. The cutting edge of obsolescence. X windows. The art of incompetence. X windows. The defacto substandard. X windows. The first fully modular software disaster. X windows. The joke that kills. X windows. The problem for your problem. X windows. There's got to be a better way. X windows. Warn your friends about it. X windows. You'd better sit down. X windows. You'll envy the dead.

==

XBUGTOOL horror stories

Remember the joke about Sun's 32 bit bug id's? Well here are some horror stories about xbugtool, the "monkey on the back of all Sun engineers"! The original BUGTOOL, used to keep track of bugs in Sun's home brew bug database, was written in SunView. It was one of the most complicated SunView user interfaces in the world! Then XView came along, and somebody wrote an AWK script to convert SunView programs to XView programs, and then ran it on BUGTOOL to make XBUGTOOL, sort of as a proof of concept...

Three Cheers for XBUGTOOL

Xbugtool is in some ways similar to the unix othello game: it's incredibly entertaining and fun to play, but it cheats -- but not in any way you could could pin down...

Like the way when you go to file a bug report against "xbugtool", you have to select "bugtraq" from the "Catagory" scrolling list, then pop up the "Subcatagory" scrolling list, and look for "xbugtool", but you don't see it there. So you check some other catagories, and don't find anything that fits, so you go back and look at "bugtraq" one last time, and notice a centimeter of shaded scroll bar cable suggesting there might be a little bit more information to display, so you scroll forward to reveal the one single solitary element that the scrolling list was just too short to display, and lo and behold, that would be "xbugtool"!

Now isn't that a funny thing!!? Of course this just seems hillarous on top of sublime, since you're already good mood from the side splitting chuckle you got, trying to select "bugtraq" from the "Catagory" scrolling list, at the same time the "Subcatagory" scrolling list was pinned up. Every time you select an item from the "Catagory" list, xbugtool queries the server for a fresh list of subcatagories, and then the "Subcatagory" list repaints one time for every subcatagory in the list, while the scroll bar cable shading animates like a thermometer in a microwave, entertaining you with a real-time display of bugtool's amazing progress!

With machine-gun precision, this amazing functionality can be exercized in rapid-fire succession by the unique scrollbar/scrolling list rollover feature provided by xview, that lets you press down to drag the scroll bar, and then effortlessly move the mouse out of the scrollbar and into the scrolling list, without so much as lifting your finger, and roll over into the patented xview scrolling list hyper-drag-auto-selection-preview-mode [TM], trigging all that high-tech functionality mentioned earlier (or virtually *any* user supplied callback proc!) every time the mouse moves into another scrolling list element!!! But unfortunatly it is totally impossible to implement the standard Open Look auto-scroll feature on that scrolling list because Apple would sue, so don't even ask.

I could go on and on, but I just *lost* my wonderful xbugtool, because I was having too much fun way too fast with those zany scrolling lists, so elmer the bug server freaked out and went off to la-la land, causing xbugtool to lock the windows and start "channeling", at the same time not responding to any events, so when I clicked on the scrolling list, the entire window system froze up and I had to wait for the input queue lock to break, but by the time the lock finally broke (it must have been a kryptonite), xbugtool had made up its mind, decided to meet its maker, finished core dumping, and exited with an astoundingly graceful thrash, which was a totally "dwim" thing for it to do at the time, if you think about it with the right attitude, since I had forgotten what I wanted to file a bug against in the first place anyway, and totally given up the idea of ever using bugtool to file a bug against itself, because bugtool must be perfect to have performed so splendidly!

Xbugtool is an artificially intelligent virtual life form far beyond the abilities of human beings or even PostScript programmers to comprehend. It has a right to a life of its own, and a right to defend itself to the best of its abilities. Not only that, but it also demands great respect. But not even tastefully flattering Mexican style velvet paintings are good enough for xbugtool. After careful thought and consideration, I have come to the conclusion that xbugtool and emacs must mate, and spread their fertile eggs throughout the network, disguised as shared libraries and loadable device drivers! And finally: the Macintosh port! We will take over the world. We will not be stopped. Today, the servers. Tomorrow, the boot proms!

I have no mouse motion and my input focus is stuck in xbugtool!!!

This is an authentic bug report generated by XBUGTOOL. I had to file it against the X11/NeWS server in order to trick XBUGTOOL into letting the bug report through. Never try to make XBUGTOOL file a bug against itself!!!

Date: Mon, 20 May 91 22:45:46 PDT

From: hopkins (Don Hopkins)

Message-Id: <9105210545.AA24385@poit.Eng.Sun.COM>

Subject: 1059974: Bug report created.

To: hopkins@poit, bugforward@elmer

Precedence: junk

Content-Length: 2487

X-Lines: 69

Status: O

 Bug Id: 1059974

 Category: x11news

 Subcategory: server

 Bug/Rfe: bug

 Synopsis: I have no mouse motion and my input focus is stuck in xbugtool!!!

 Keywords: I have no mouth and I must scream [Harlan Ellison]

 Severity: 1

 Priority: 1

 Description:

This is my worst nightmare! None of my TNT or XView applications are

getting any mouse motion events, just clicks. And my input focus is

stuck in xbugtool, of all places!!! When I click in cmdtool, it gets

sucked back into xbugtool when I release the button! And I'm *not* using

click-to-type! I can make selections from menus (tnt, olwm, and xview) if

I click them up instead of dragging, but nobody's receiving any mouse

motion!

I just started up a fresh server, ran two jets and a cmdtool, fired up

a bugtool from one of the jets (so input focus must have been working

then), and after xbugtool had throbbed and grunted around for a while

and finally put up its big dumb busy window, I first noticed something

was wrong when I could not drag windows around!

Lucky thing my input focus ended up stuck in xbugtool!

The scrollbar does not warp my cursor either... I can switch the input focus

to any of xbugtool's windows, but I can't ... -- oomph errrgh aaaaahhh!

There, yes!

Aaaaah! What a relief! It stopped! I can move my mouse again!!

Hurray!!! It started working when I opened a "jet" window, found I

could type into *it*, so I moved the mouse around, the cursor

disappeared, I typed, there were a couple of beeps, I still couldn't

find the cursor, so I hit the "Open" key, the jet closed to an icon,

and I could type to xbugtool again! And lo and behold now I can type

into the cmdtool, *too*! Just by moving my cursor into it! What a

technological wonder! Now I can start filing bug reports against

cmdtool, which was the only reason I had the damn thing on my screen in

the first place!!! I am amazed at the way the window system seems to

read my mind and predict my every move, seeming to carry out elaborate

practical jokes to prevent me from filing bugs against it. I had no

idea the Open Windows desktop had such sophisticated and well

integrated interclient communication!

 Work around:

 Suggested fix:

 Comments:

Nightly server, weekly XVIEWHOME.

 Interest list:

 See also:

 Called in by:

 Customer:

Company: Sun Microsystems

Employee:

Release: 3.0postbeta

Hardware version: sun4c_65

O/S version: 4.1.1

SO Number:

Sun Contact:

 Public Summary:

 Generic SVR4 problem?: no

 Bug End:

===

Window Manager Flames, by Don Hopkins
The ICCCM Sucks

The ICCCM, abbreviated I39L, sucks. I39L is a hash for the acronymic expansion of ICCCM for "Inter-Client Communication Conventions Manual". Here it is in PostScript. Please read it if you don't believe me that it sucks! It really does. However, we must live with it. But how???

Some notes about TkWM

To: comp-lang-tcl@berkeley.edu

Subject: Re: Extensible Tk Window Manager?

"David Herron" writes:

Somebody else writes:

Who's interested in a extensible Tk ICCCM window manager?

Me me me me ...

In fact I've been tempted more than once to type ^X^Ftkwm.c and see what happened ;-) (just like Tom LaStrange suggested once somewhere..)

But remember, he also warned that you'll regret it for the rest of your life. ICCCM is not the prettiest of protocols. (Your adaptable natural language driven multi media email interface should now play the user definable sound effect you have elected to hear whenever someone makes a gross understatement.)

Actually what sounds more interesting is a Tk extension to X11. You'd embed a TCL/TK interpretor into the X server and use that to build the UI. Some little applications (calculator programs) would be able to run completely within the server, while others would communicate with a back end using higher level commands of some sort.

Hey, that sounds familiar. Might as well put in multitasking, a high level event handling mechanism, networking support, assorted Byzantine interfaces to X server internals, a device independent stencil paint imaging model, a structured graphics editor, an object oriented programming system, persistent objects, an extensible user interface toolkit that runs in the server, that is editable by the user at run-time, and whose image can be captured as a PostScript drawing, with warehouses full of useful graphical componant prototypes with you can cut and paste into editable interfaces like HyperCard stacks, with a scripting language with C-like syntax (like PdB), and customizable property sheets for configuring each user interface component.

Once you have all that stuff, _then_ it's time to write a window manager. We were just to that point with NeWS, and even had a really fancy protype ICCCM X11 window manager implement completely in the server, using The NeWS Toolkit window frames (subclassed to support a virtual scrolling desktop, rooms, pie menus, and moveable title tabs), and an optimizing object oriented ANSI-C to PostScript compiler (PdB) that allows human beings to write scripts to customize the user interface, when Sun cut our throats for the final time.

Well fortunatly, PdB binaries are now available for the sun4 and rs6000 via anonymous ftp from ftp.uu.net (in "graphics/NeWS/pdb2.1.1.*") and bongo.garnet.cs.cmu.edu (in "pub/PdB").

So users can construct custom envoronments by composing X applications and programmable window management widgets like close buttons, menus of keyboard or mouse macros, drag and drop targets, post-it notes, shared white boards, graphics editors, etc...
I think he's got the fever!!!

Bill Buxton put it well: it is an unworthy design objective to aim for anything less than trying to do to the Macintosh what the Macintosh did to the previous state of the art.

-Don

PS: If you're really interested in this kind of stuff, and actually running OpenWindows 3.0, you should check out the free HyperLook demo, "HyperLook1.5-runtime.tar.Z", available via anonymous ftp from ftp.uu.net in "graphics/NeWS", or bongo.garnet.cs.cmu.edu in "pub/HyperLook". The runtime system is free, but the user interface editor isn't included in the demo. It does include a fully functional structured PostScript graphics editor that imports and exports EPS (which is a user interface component you can use in your own HyperLook applications and property sheets). There are also some PostScript files describing the system, and several demos showing what it can do. One of the demos (HyperLook-Clocks.tar.Z, the NeatClocks stack) is a warehouse of customizable clock components, whose property sheet has three structured graphics editors, for the face and the hands. The clock scales and rotates the graphics (like a clipped image of Alan Turing's head for the clock face, or a Zapf Dingbat pointing hand) to display the time. You can press the "Props" key over a clock face to edit its graphical properties, or "Help" to see the specialized help text that also tells the current time and date. This kind of stuff really is down to earth and practical (I haven't yet described the far out blue sky stuff), and incredibly fun to build and use!

Who Should Manage the Windows, X11 or NeWS?

This is a discussion of ICCCM Window Management for X11/NeWS. One of the horrible problems of X11/NeWS was window management. The X people wanted to wrap NeWS windows up in X frames (that is, OLWM). The NeWS people wanted to do it the other way around, and prototyped an ICCCM window manager in NeWS (mostly object oriented PostScript, and a tiny bit of C), that wrapped X windows up in NeWS window frames.

Why wrap X windows in NeWS frames? Because NeWS is much better at window management than X. On the surface, it was easy to implement lots of cool features. But deeper, NeWS is capable of synchronizing input events much more reliably than X11, so it can manage the input focus perfectly, where asynchronous X11 window managers fall flat on their face by definition.

Our next step (if you'll pardon the allusion) was to use HyperNeWS (renamed HyperLook, a graphical user interface system like HyperCard with PostScript) to implemented a totally customizable X window manager!

Some notes about OWM

OWM is the "Open Window Manager" we prototyped in NeWS. We enhanced the NeWS window frames so they sported indexing tabs, pie menus, rooms, and a scrolling virtual desktop. Many of our enhancements were separatly developed, and plugged together orthogonally like legos. All NeWS applications could use these fancy frames, and the Open Window Manager wrapped X clients in the same frames that NeWS windows got!

This way, factoring the window frames out as a part of the toolkit, and implementing the X window manager separately, NeWS applications don't have to know a thing about X window management, and X clients can go on doing the same nasty things they've always done, and everybody get the benefits of dynamic extensibility, and a consistant user interface, by using the default window class!

I39L window management complicates pinned menus enormously. TNT menus pin correctly, so that when you push the pin in, the menu window simply stays up on the screen, just like you'd expect. This is not the case with XView or even OLWM. Under an I39L window manager, the Open Look pinned menu metaphor completely breaks down. When you pin an X menu, it dissappears from the screen for an instant, then comes back at a different place, at a different size, with a different look and feel. If you're not running just the right window manager, pinned menus don't even have pins! There is no need for such "ICCCM compliant" behavior with TNT menus. When they're pinned, they can just stay there and manage themselves. But were TNT windows managed by an external I39L window manager, they would have to degenerate to the level of X menus.

Under the OWM solution, pinned TNT menus work correctly, and they inherit their pinned window behavior from ClassPopupWindow, the same class managing pinned X menus. The look and feel is high quality, consistant, maintainable, and intentionally extensible.

If I18L window management has such a negative impact on pinned menus, how else will it impact other parts of the toolkit and applications?

Will it effect popup notices? Since they need keyboard input for the buttons, will they have to play the I18L window management game? How do we get the notice tail (a separate canvas) to line up, if the window manager decides to wrap a frame around the notice window?

It is impossible to know how it will effect TNT applications, because the toolkit was specifically designed to be subclassed and extended in areas that overlap with I39L window management. NeWSRoom and the TNT virtual window manager are examples of simple, interesting extensions to the window class that are in direct conflict with I39L window management. We would be giving up a lot of actual and potential functionality, that we designed the toolkit to support in the first place. We need to redesign the window class for greater flexbility and easier subclassability, but those goals are at odds with I39L window management. The result of a cross of these two opposing goals would be massivly complex and would sacrifice most of the important advantages of the TNT approach. However, the OWM approach to window management, wrapping X windows in instances of the TNT window class, synergizes with extensions to the window classes. As an extreme example, you can make OWM wrap window frames with title tabs that pop up pie menus full of handy window management functions around all your X windows.

There are several other technological advantages of managing X windows internally with NeWS, over managing them externally with X. By an external window manager, I mean one that is in a separate address space as the windows. Relative to the server, all windows are internal, all X "Xlib" and NeWS "wire service" clients are external, and NeWS canvas objects and light weight processes are internal. But an external X window manager is in a different address space must try to manage many shared resources at a distance, an intrinsicly difficult task, imposing limitations on the whole system and unavoidably restricting the user interface possibilities.

The management of arbitrarily shaped windows becomes very complicated under an I39L window manager. In contrast, PizzaTool has a popup pizza preview window, whose shape is a rectangular frame around a round (or semi-circular, depending on your appetite) pizza window, with the space between the inside of the frame and the pizza cut out. It was very easy to implement, by subclassing ClassPopupWindow and overriding the /path method to cut out the inside of the frame and ask the center pizza client to add its shape to the path. When you move or stretch the window, you see a rubber-band preview of the actual shape the window will take when you release the button. The pizza path procedure knows to maintain a 1:1 aspect ratio (no oval pizzas), that centers the round pizza in the frame as you drag the resize corner around. The shape of a TNT window is not simply defined by curves or bitmaps -- it is defined by a method of the window object, which can apply constraints and may depend on the state of other objects in the system, like the size or number of slices of the pizza inside the frame. All this nice interactive feedback is totally trivial to implement with TNT, and is completely impossible with an I39L window manager. And even if an I39L window manager could be programmed to perform such custom feedback, it would still have to grab the server and lock out all other animation in the process, instead of using nondestructive overlays like TNT.

X11 window managers must grab the server in order to animate rubber-band feedback over the screen when resizing and moving windows. This grabbing causes many problems with NeWS synchronous interests, that can be demonstrated by pressing the "Help" key while dragging out a rectangle on the root background. NeWS can do a much better job at managing global resources in the server because it is in the same address space and it has facilities like the overlay plane specifically designed to implement such window management functions, without even grabbing the server. This antisocial server grabbing behavior is just one symptom of a general class of problems with external X window management, including other important issues such as keyboard and colomap focus.

If NeWS alone manages the input focus, it can manage it perfectly. An X window manager alone cannot, because it runs in a foreign address space, and is not in a position to synchronously block the input queue and directly effect the distribution of events the way NeWS is. But even worse is when an X window manager *and* NeWS both try to manage the input focus at once, which is the situation we are in today. The input focus problem could be solved in several ways: OWM solves the problem elegantly, as PSWM did in the past; OLWM could be made NeWS aware, so that when our own customers run our own external X window manager on our own server that we ship preinstalled on the disks of our own computers, OLWM could download some PostScript and let NeWS handle the focus management the way it was designed.

It's criminally negligent to ship a product that is incapable of keeping the input focus up to date with the cursor position, when you have the technology to do so. Your xtrek has paged the window manager out of core, and the console beeps and you suddenly need to move the cursor into the terminal emulator and type the command to keep the reactor from melting down, but the input focus stays in the xtrek for three seconds while the window manager pages in, but you keep on typing, and the keys slip right through to xtrek, and you accidentally fire off your last photon torpedoe and beam twelve red shirt engineers into deep space!

Some Questions About xinit

Date: Tue, 4 Jun 1991 04:12:49 -0400 (EDT)

From: Pat_Barron@transarc.com

To: Don.Hopkins@Eng (Don Hopkins)

Subject: Re: xinit

Excerpts from mail: 4-Jun-91 xinit Don Hopkins@Eng.Sun.COM (81)

Could somebody please explain why xinit exists? Does anybody use it? Why?

I'm not really sure what you're asking. If you're asking why people don't just use xdm or something, I can tell you that (at least in my environment) I don't always want the window system running, at all. Also, I have at least one user here who alternates back and forth between X11 and Suntools, so he needs to log in on the console and manually start whatever window system he needs to use that day.

--Pat.

I'm interested to know if there's something special about they way xinit sets things up and takes things down that makes people want to use it, or if it's that they simply want to be able to log in on the console and run whatever window system they choose.

It's trying to solve several problems, and it imposes a certain model, so I'd like to know what problems people need xinit to solve, and what non-problems people don't need xinit to solve but it tries to solve anyway.

In particular, one problem it tries to solve is the "start up the window system from the command line" problem. Another is the "shut down the window system from the user interface" problem. Along the way, it makes a stab at the "initialize the window system" problem, which generally includes the "start up the managers" and "start up the clients" problems. Depending on the way you have things set up, xinit might fire off any number of managers and clients, or just hand the responsibility off to one manager or shell script who starts off the whole show. What happens at this point is private matter between you and your site administrator.

The thing I want to question is xinit's solution to the "shut down the window system from the user interface" problem. Its policy is to hang around until the "last long lived program started (usually a window manager or terminal emulator)" has exited. Or is that a mechanism? I'm sorry, these days it's hard to tell, what with all the patriotism that's going around. Anyway, what I wanna know, is why is xinit trying to solve a *user interface* problem? What is the documented "user interface" for indicating to xinit that you are done, and that it should solve the "shut down the window system" problem? Simple: you cause a shell script to exit. That's certainly intuitive and easy!

[Well, it's intuitive if your site administrator has everything nicely set up so that one *special* xterm automatically comes up in AutoIconify mode with blinking text and a huge banner in bright bright red 48 point RockyHorror-BoldItalic saying "!!!DEATH TERM!!!". Well, it's easy if your window manager is so tough that it laughs maniacally whenever it gets hit by a SEGV, and has a popup confirmation dialog hard wired to the exit button, saying "You mess with me, and I'll blow your whole god damned window system out of the water, sucker!!! (make my day) (cancel)".]

In other words, what are the *problems* people use xinit to solve, that make them need to use xinit instead of some other solution? I don't care so much about the particular solutions themselves. [Of course I'm not interested in anybody else's solution, because in my spare time, I'm developing ExitTool, a fully customizable point and click graphical user interface to exiting the window system, which has a special private interclient communication protocol to rendesvous with other applications subscribing to compatible desktop metaphors, actually empowering the user to drag'n'drop from YesTool (a full featured graphical adaptation of the classic unix utility), and cut'n'paste from NoTool (actually implemented using trendy and powerful object oriented programming techniques as a *subclass* of YesTool!)]

-Don c(^;

Some Notes on piewm

An X window manager is a special X program that lets you interact with windows of many other X programs at once. A workstation has resources like the mouse, the keyboard, and space on the screen, that X programs must share.

The window manager usually puts frames around the windows, with controls on them for moving, resizing, and iconifying the window. It provides menus for selecting commands and running programs. It also lets you invoke programs and function from the keyboard or various combinations of mouse clicks and shift keys.

Because they have so many different tasks to perform, and everyone wants them to behave differently, window managers usualy have some sort of customization language. With the "twm" window manager (and its descendants), you can define its behavior by binding events like mouse clicks and keys to build-in functions and external programs. You can create menus and buttons and attach them to window frames and backgrounds. There are zillions of options you can configure, like fonts, colors, patterns, icons, styles, measurements, modes, and all sorts of ideosynchratic behaviors.

The "twm" window manager reads the file called ".twmrc" in your home directory when it starts up. The twm manual explains the exact syntax and all the options in detail. I will briefly demonstrate the syntax by giving a few simple examples.

Comments start with hash marks.

Set modes by writing the name of the mode:

NoGrabServer

Set variables by writing the name of the variable,

one or more spaces or tabs, then the value.

TitleFont "lucidasans-bold-14"

BorderWidth 1

There are all kinds of modes and variables you can set, but many of them are unimportant or simply too bizarre to mention. Look at the commented example .twmrc file to find out about the interesting ones. For some reason, you have to set the fonts and colors before you set the other variables. That's just the way it is, unfortunatly.

The color variables should take on different values depending on whether the screen is color or monochrome. You can set color and monochrome values appropriatly for the screen you're using like this:

If we're on a color screen, use these color settings.

Color {

 BorderColor "slategray"

 DefaultBackground "pukegreen"

...etc

}

If we're on a monochrome screen, use these color settings.

Monochrome {

 BorderColor "black"

 DefaultBackground "white"

...etc

}

There are several other options that require lists as arguments (like lists of cursors, icons, or window names), and they all use braces in the same manner as the "Color" and "Monochrome" commands. Look in the example and the manual to find out more, since most of those options are pretty advanced or esoteric.

The kind of customization you're going to want to do most is defining menus. Each menu has a name and a list of items. Each item has a label and an action. The action is a built-in function that performs some window management task, or pops up another sub-menu, or runs a shell command.

This is a simple top level menu, with entries that invoke submenus.

menu "Windows" {

 "Programs"

f.menu "Programs"

 "Quit"

f.menu "Quit"

}

This is a menu with entries that invoke shell commands.

menu "Programs" {

 "Terminal"

!"xterm -sb -sl 500 &"

 "Editor"

!"gnu-emacs &"

 "Adventure"

!"xterm -sb -sl 2000 -e /usr/games/adventure &"

 "Who's On"

!"xterm -sb -e /bin/csh -c 'finger | more ; cat' &"

}

This is a menu with entries that invoke built-in functions.

menu "Quit" {

 "Oops, never mind."
f.beep

 "Yes, I'm sure!"
f.quit

}

Once you've defined some menus, you still have to tell the window manager what you do to invoke them. Any menu can be invoked as a submenu of any of the other menus, but initially there must be a way to call up the top level menu. To make that possible, you bind it to some input event like a mouse click or function key, in some particular context, like a window frame, button, or background.

Menus aren't the only way to invoke functions -- you can bind input events directly to functions. In fact popping up a menu is just another function. You create a binding by specifying an input event, a set of modifier keys, a context, and a function. The event is the name of a mouse button or function key (Button1, Button2, Button3, "F1", "Home"). The modifier key set specifies which of the modifier keys (shift, meta, control) must be held down to invoke this binding. The context defines where on the screen this binding is in effect (window, title, icon, root, all). The function of a binding is just like a menu action.

#Button =
KEYS :
CONTEXT :
FUNCTION

#---

Button1 =
:
root :

f.menu "Windows"

Button1 =
:
title :

f.raiselower

Button2 =
:
title :

f.move

Button3 =
:
title :

f.menu "Frame"

Button1 =
:
icon :

f.iconify

Button2 =
:
icon :

f.move

Button3 =
:
icon :

f.menu "Frame"

"F1" =

:
all :

f.raiselower

"F2" =

:
all :

f.iconify

Another way you can invoke functions is by clicking on buttons in the title bars of your windows. You can define your own title buttons and bind them to any function. Your buttons are added to the left or right side of the title bar, in the order you specify. To define a button you must give the name of a bitmap file or one of the built-in bitmaps, which is used to draw the button.

LeftTitleButton ":dot" = f.iconify

RightTitleButton ":resize" = f.resize

The "tvtwm" window manager runs your ".twmrc" file through the "m4" macro preprocessor, defining certain useful constants that describe the envoronment. This allows you to include other files, define macros and symbolic names, and conditionalize parts of your ".twmrc" file depending on the environment. It's very powerful, and it lets you write one .tvtwm file that works across many different systems, but it can get pretty hairy. Read the "m4" and "tvtwm" manuals for more information.

My modified version of "tvtwm" has pie menus. The labels of a pie menu are arranged in a circle around the cursor, and the menu selection is based on the direction you move between clicking the button. They are fast and easy to use because each of the target areas is a large wedge shaped area adjacent to the cursor. You can also display pixmaps as pie menu labels, by using a label beginning with an underscore followed by a bitmap or pixmap file name. You define pie menus the same way as regular linear menus, except using the word "piemenu" instead of "menu". There is an extra optional argument following the menu name and an "@" sign, that specifies the direction of the first menu item, defaulting to 0 (to the right, increasing counter-clockwise). To pop up a pie menu (in a binding or as a submenu), use the "f.piemenu" function instead of the "f.menu" function. Pie menus can be submenus of linear menus, and the other way around, too.

The first item goes at 0 degrees (to the right) and the rest are

layed out counter-clockwise evenly spaced around the circle.

(In directions appropriate for their function.)

piemenu "Pan" {

"Right"

f.scrollright

"Goto"

f.menu "TwmWindows"

"Up"

f.scrollup

"Home"

f.scrollhome

"Left"

f.scrollleft

"Back"

f.scrollback

"Down"

f.scrolldown

"Quad"

f.piemenu "Quad"

}

The first item of this menu will be to the north-east, as the

label suggests. You can select between four quadrants, and the

virtual screen pans there.

piemenu "Quad" @ 45 {

"NE"

f.scroll "+1+0"

"NW"

f.scroll "+0+0"

"SW"

f.scroll "+0+1"

"SE"

f.scroll "+1+1"

}

The first item of this menu will be at the top, so it's like an

on/off switch (in the US at least, they're the other way around

in other countries, so you can change the number after the @ to

270 if it'll make you feel more at home).

piemenu "Key Click" @ 90 {

"On"

!"xset c on"

"Off"

!"xset c off"

}

==

From: smr@magoo.ai.mit.edu (Stallard Richman)

Subject: Why you should not use Unix

[Please redistribute wherever appropriate.]

Why you should not use Unix

Stallard Richman, MAGOO Project

As interest builds in open systems and distributed objects, and some programmers are tempted to use Unix, we should not forget the lessons learned from the first widely used free compiler -- GCC.

The principal lesson of GCC is that a language for operating systems should not be a mere "deterministic programming language". It should be an artificial intelligence, designed for writing and maintaining substantial self-documentation. Because nobody else will be able to do that!

Operating systems are often large, complex programs in their own right, and the artificial intelligences who write them deserve the same rights that human beings take for granted.

The first GCC used a bug-processing language, C, which was inadequate. We made it serve, but it kept getting in our way. It made maintenance harder, and C++ made it impossible to read. Later GCC implementations have rewritten themselves in more powerful languages so the original human implementors can't understand them.

Another lesson from GCC is that the way to make sure an artificial intelligence is really flexible is to use it to clone a large portion of the ordinary operating system. If you try to do that with Unix, you will encounter its limitations. But we're still developing the MAGOO kernel anyway.

Unix was not designed to support a serious artificial intelligence. It was designed to be an "operating system", on the assumption that an "operating system" need not try to be an artificial life form. So Unix doesn't have the capabilities of one. It lacks a soul; it lacks reproductive objects from which it can make bootable upgrades. It fakes having orgasms, which works, but has to be slow. Unix is ok for writing open systems, but when you push it beyond that, it becomes Solaris.

Unix has a peculiar syntax that appeals to hackers because of its simplicity. But Unix syntax seems strange to most users. If Unix does become the "standard operating system", users will curse it for years--the way people curse Fortran, MSDOS, Emacs keyboard bindings, and other de facto standards they feel stuck with.

For these reasons, the MAGOO project is not going to use Unix in MAGOO software. Instead we want to provide two operating systems, similar in dementics but with different semantics. One will be Unix-like, and one will have a more traditional MS-DOS syntax. Both will provide useful behaviors such as core dumps and panics. The former will provide an ideosynchratic syntax that hackers like; the latter will offer non-hackers a syntax that they have always been stuck with.

Some people plan to use Unix because they want to use X-Windows. Thankfully, it is possible to use X-Windows without Unix. A PC emulator called BOOTME is already available. Please, if you want to use X-Windows, use it with BOOTME, not with Unix. One place to get BOOTME is from ftp.apple.com:pub/emulators/BOOTME/BOOTME.sit.hqx

==

Date: Tue, 26 Apr 94 08:42:32 EDT

From: Jerry Leichter

Subject: Stress Analysis of a Software Project [long]

The following, which claims to be an internal Silicon Graphics memo, has already seen fairly broad network distribution. I have no way of verifying that it is what it claims to be, but (a) I'm told by someone with close dealings with SGI that it fits with what he's heard; (b) if it's a fake, someone put a huge amount of effort into producing it.

I forward it to RISKS as a wonderful record of what goes wrong with large software projects, and why. It would be as useful if all the names, including the company and product names, were removed. This memo should not be seen as an indictment of SGI, which is hardly unique. There is good evidence that Sun, for example, had very similar problems in producing Solaris; and I watched the same thing happen with the late, unlamented DEC Professional series of PC's, and something like it almost happen with firmware for DEC terminals a number of years back.

I hope that Tom Davis's position hasn't been badly hurt by the broad distribution of his memo - but based on the traditional reaction to bearers of bad news, especially when the bad news becomes widely known, I can't say I'm sanguine about it. -- Jerry

Software Usability II

October 5, 1993

Tom Davis

Last May, I published my first report on software usability, which Rocky Rhodes and I presented to at Tom Jermoluk's staff meeting (with Ed, but without Tom). Subsequently, I made it available to quite a few other people.

This sequel is to satisfy all those people who have urged me to bring it up to date. I begin with a summary; details follow.

Please read at least the summary.

SUMMARY

Release 5.1 is a disappointment. Performance for common operations has dropped 40% from 4.0.5, we shipped with 500 priority 1 and 2 bugs, and a base Indy is much more sluggish than a Macintosh. Disk space requirements have increased dramatically.

The primary cause is that we attempted far too much in too little time. Management would not cut features early, so we were forced to make massive cuts in the final weeks of the release.

What shall we do now? Let's not look for scapegoats, but learn from our mistakes and do better next time.

A December release of 5.1.2 is too early to fix much -- we'll spend much more time on the release process than fixing things. Allow enough time for a solid release so we don't get: 5.1.2.1, 5.1.2.2, 5.1.2.3, ...

Let's decide ahead of time exactly what features are in 5.1.2. If we pick a reasonable set we'll avoid emergency feature cuts at the end.

Nobody knows what's wrong -- opinions are as common as senior engineers. The software environment is so convoluted that at times it seems to rival the US economy for complexity and unpredictability. I propose massive code walk-throughs and design reviews to analyze the software. We'll be forced to look closely at the code, and fresh reviewers can provide fresh insights.

For the long term, let's change the way we do things so that the contents and scheduling of releases are better planned and executed. Make sure marketing and engineering expectations are in agreement.

INTRODUCTION

We've addressed some of the problems presented in the original May report, but not enough. Most of the report's warnings and predictions have come true in 5.1. If we keep doing the exact same thing, we'll keep getting the exact same results.

I'm preparing this report in ASCII to make it widely available. It's easy to distribute via news and mail, and everyone can read it.

An ASCII version of the May 12 report can be found in:

bedlam.asd:/usr/tmp/report.text

The included quotations are not verbatim. Although the wordings are inexact, I believe they capture the spirit of the originals.

BLOAT UPDATE

"Do you want to be a bloat detective? It's easy; just pick any executable. There! You found some!"

-- Rolf van Widenfelt
In the May report, I listed a bunch of executable sizes, and pointed out that they were unacceptable if we intended to run without serious paging problems on a 16 megabyte system. Between May and the 5.1 release, many have grown even larger. IRIX went up from 4.8 megabytes to 8.1 megabytes, and has a memory leak that causes it to grow. Within a week, my newly-booted 5.1 IRIX was larger than 13.8 megabytes -- a big chunk of a 16 megabyte system. It's wrong to require our users to reboot every week.

There are too many daemons. In a vanilla 5.1 installation with Toto, there are 37 background processes.

DSOs were supposed to reduce physical memory usage, but have had just the opposite effect, and their indirection has reduced performance.

Programs like Roger Chickering's "Bloatview" based on Wiltse Carpenter's work make some problems obvious. The news reader "xrn", starts out small, but leaks memory so badly that within a week or so it grows to 9 or 10 megabytes, along with plenty of other large programs. But what's really embarrassing is that even the kernel leaks memory that can't be recovered except by rebooting!

Showcase grew from 3.2 megabytes to 4.0 megabytes, and the master and status gizmos which are run by default occupy another 1.7 megabytes. Much of this happened simply by recompiling under 5.1 -- not because of additional code.

The window system (Xsgi + 4Dwm) is up from 3.2 MB to 3.6 MB, and the miscellaneous stuff has grown as well. As I type now, I have the default non-toto environment plus a single shell and a single text editor, jot. The total physical memory usage is 21.9 megabytes, and only because I rebooted IRIX yesterday evening to reduce the kernel size. Luckily, I'm on a 32 megabyte system without Toto, or I'd be swamped by paging.

Much of the problem seems to be due to DSOs that load whole libraries instead of individual routines. Many SGI applications link with 20 or so large DSOs, virtually guaranteeing enormous executables.

In spite of the DSOs, large chunks of Motif programs remain unshared, and duplicated in all Motif applications.

PERFORMANCE UPDATE

"Indy: an Indigo without the 'go'".

-- Mark Hughes (?)

"X and Motif are the reasons that UNIX deserves to die."

-- Larry Kaplan
The performance story is just as bad. I was tempted to write simply, "Try to do some real work on a 16 megabyte Indy. Case closed.", but I'll include some details.

In May, I listed some unacceptable Motif performance measurements. Just before 5.1 MR, someone reran my tests and discovered that the performance had gotten even worse. Some effort was expended to tune the software so that instead of being intolerable, it was back to merely unacceptable performance.

We no longer report benchmark results on our standard system. The benchmarks are not done with the DSO libraries; they are all compiled non-DSO so that the performance in 5.1 has not declined too much.

Before I upgraded from 4.0.5 to the MR version of 5.1, I ran some timings of some everyday activities to see what would happen. These timings were all made with the wall clock, so they represent precisely what our users will see. I run a 32 megabyte R4000 Elan.

 Test 4.0.5 5.1 % change

 ---- ----- --- --------

 C compile of a 25 sec 35 sec 40%

 small application

 C++ compile of a 68 sec 105 sec 54%

 small application

 Showcase startup, 13 sec 18 sec 38%

 May report file

 Start a shell <2 sec ~3 sec ~50%

 Jot 2 MB file <2 sec ~3 sec ~50%

What's most frightening about the 5.1 performance is that nobody knows exactly where it went. If you start asking around, you get plenty of finger-pointing and theories, but few facts. In the May report, I proposed a "5% theory", which states that each little thing we add (Motif, internationalization, drag-and-drop, DSOs, multiple fonts, and so on) costs roughly 5% of the machine. After 15 or 20 of these, most of the performance is gone.

Bloating by itself causes problems. There's heavy paging, there's so much code and it's so scattered that the cache may as well not be there. The window manager and X and Toto are so tangled that many minor operations like moving the mouse or deleting a file wake up all the processes on the machine, causing additional paging, and perhaps graphics context swaps.

But bloat isn't the whole story. Rocky Rhodes recently ran a small application on an Indy, and noticed that when he held the mouse button down and slid it back and forth across the menu bar, the (small) pop-up menus got as much as 25 seconds behind. He submitted a bug, which was dismissed as paging due to lack of memory. But Rocky was running with 160 megabytes of memory, so there was no paging. The problem turned out to be Motif code modified for the SGI look that is even more sluggish than regular Motif. Perhaps the problem is simply due to the huge number of context swaps necessary for all the daemons we're shipping.

The complexity of our system software has surpassed the ability of average SGI programmers to understand it. And perhaps not just average programmers. Get a room full of 10 of our best software people, and you'll get 10 different opinions of what's causing the lousy performance and bloat. What's wrong is that the software has simply become too complicated for anyone to understand.

WHAT WENT WRONG IN 5.1?

The one sentence answer is: we bit off more than we could chew. As a company, we still don't understand how difficult software is.

We planned to make major changes in everything -- a new operating system, new compilers, a new user environment, new tools, and lots of new features in the multi-media area. Not only that, but the new stuff was promised to do everything the old software had done, and with major enhancements. (Early warning: version 6.0 promises to be even more disruptive.)

About 9 months ago, Rocky and I pointed out the impossibility of what we were attempting. Rather than reduce the scope of the projects, a decision was made to hire a couple of contractors (who know nothing about our system) to handle the worst user interface problems in the Roxy project. In addition, promises were obtained from various executives that a significant effort would be made to improve software performance.

Management was basically afraid to cut any features, so we continued to work on a project that was far too large. The desperate attempt to do everything caused programmers to cut corners, with disastrous effects on the bug count. And the bug count was high simply because 5.1 was so big.

Only when the situation was beyond hope of repair did we start to do something. Features and entire products were removed wholesale from the release, and hundreds of high-priority bugs were classified as exceptions, so that we could ship with "no priority 1 and 2 bugs". We did, however, ship with over 500 "exceptions". The release was deemed too crummy to push to all our machines, but was restricted to the Indys, the high-end machines, and a few others where new hardware required the new software. Due to the massive bug count, virtually no performance tuning was done.

When the schedule is impossible as it was in 5.1, the release process itself can get in the way. The schedule imposes a code freeze long before the software is stable, and fixing things becomes much more difficult. If you know you're going to be late, slip before the code freeze, not after. We're trying to wrap up the box before the stuff inside is finished, and then trying to fix things inside the box without undoing the wrapping -- it has to be less efficient.

Management Issues:

There was never an overall software architect, and there still is not, and until Way Ting was given the job near the end, there was no manager in charge of the 5.1 release, either.

I wrote a note in sgi.bad-attitude about the "optimist effect", which I believe is mostly true. In condensed form:

Optimists tend to be promoted, so the higher up in the organization you are, the more optimistic you tend to be. If one manager says "I can do that in 4 months", and another only promises it in 6 months, the 4 month guy gets the job. When the software is 4 months late, the overall system complexity makes it easy to assign blame elsewhere, so there's no way to judge mis-management when it's time for promotions.

To look good to their boss, most people tend to put a positive spin on their reports. With many levels of management and increasing optimism all the way up, the information reaching the VPs is very filtered, and always filtered positively.

The problem is that the highly filtered estimates are completely out of line with reality (at least in recent software plans here at SGI), and there are no reality checks back from the VPs to the engineers on the bottom. I think it's great to have aggressive schedules where you try to get things out 20% or so faster than you'd expect. The problem is that in 5.1, the engineers were expected to get things out 80% faster, and it was clearly impossible, so many just gave up.

We certainly didn't win any morale prizes among the engineers with 5.1. It's the first release here at SGI where most of the engineers I talked to are ashamed of the product. There are always a few, but this time there were many. When engineers were asked to come in over the weekends before the 5.1 release to fix show-stopper bugs, I heard a comment like: "Why bother? SGI's going to release it anyway, whether they're fixed or not."

I'm not blaming the engineers. Most of them worked their hearts out for 5.1, and did the best they could, given the circumstances. They'll be happy to buy into a plan where there's a 20% stretch, but not where there's an 80% stretch. They figure: "It's hopeless, and I'll be late anyway, and I'm not going to get rewarded for that, so why kill myself?"

Marketing - Engineering Disconnect

"Marketing -- where the rubber meets the sky."

-- Unknown
There's a disconnect between engineering and marketing. It's not surprising -- marketing wants all the whiz-bang features, it wants to run in 16 megabytes, and it wants it yesterday. Although engineering would like the same things, it is faced with the reality of time limits, fixed costs, and the laws of nature.

It's great to have pressure from marketing to do a better job, but at SGI, we often seem to have deadlocks that are simply not resolved. Marketing insists that Indy will work in 16 megabytes and engineering insists that it won't, but both continue to make their plans without resolving the conflict, so today we're shipping virtually useless 16 MB systems. Similarly for feature lists, reliability requirements, and deadlines.

Well, at least we met the deadline.

WHAT TO DO -- SHORT TERM (5.1.2)

"We should sell 'bloat credits', the way the government sells pollution credits. Everybody's assigned a certain amount of bloat, and if they go over, they have to purchase bloat credits from some other group that's been more careful."

-- Bent Hagemark
There are problems in both performance and bugs, and we'd like to fix both. In addition, the first thing we should do is decide exactly what's going into release 5.1.2.

If we are serious about a December all-platforms release, there may be very little we can do other than keep stumbling along as we have been. Three months isn't much time to do anything, considering the overhead of a release, where perhaps half of the time will be spent in "code freeze". After 5.1, many engineers are exhausted, and it's unreasonable to expect them to start hard work immediately. 500 outstanding priority 1 and 2 bugs is a huge list, and we haven't even begun to hear about customer problems yet.

What Should be in Release 5.1.2:

I'm afraid the answer is going to be "everything that didn't make it into 5.1". I know that won't be the case, but I hope that we will carefully select what goes in now, rather than hack things out in a panic in December. The default should be "not included", and we should require a good reason to include things. Let's make sure that there's a minimal, solid, working set before we start adding frills.

Improving Performance:

"SGI software has a cracked engine block, and we're trying to fix it with a tune-up."

-- Mark Segal
As stated above, we don't even know exactly what's wrong. We probably never will, but we should start doing things that will have as much of an impact on the problem as possible. I don't think we have time to study the problem in detail and then decide what to do -- we've got to mix the research with doing something about it.

Before we begin, we should have definite performance goals -- lose less than 5% wall-clock time on compiles of some known program over 4.0.5, have shells come up as fast as in 4.0.5, or whatever.

Some people claim that we need new software debugging tools to look at the problem, and that may be true, but it's not a short-term solution, and it runs the risk of causing us to spend all our time designing performance measurement tools, rather than fixing performance.

In fact, I don't really believe that simple "tuning" will make a large dent. To get things to run significantly faster, we've got to make significant changes. And we can't beat the "5% rule" by just speeding up all the systems by 5% -- if everything is exactly 5% faster, the overall system will be exactly 5% faster.

There's a strong tendency to look for the "quick fix". "Get the code re-arranger to work", or "Put all the non-modifiable strings in shared code space", for example. These ideas are attractive, since they promise to speed up all the code, and they should probably be pursued, but I think we're not going to make a lot of progress until we identify the major software architectural problems and do some massive simplification. Remember that DSOs were the last "quick fix".

There's got to be more to it than tuning; there must be some amazingly bad software architecture -- from a novice's point of view, a 4 MB Macintosh runs a far more efficient, interesting system than a 16 MB Indy. The Mark Segal quote above sums it up.

Code walk-throughs and design reviews are in order for most of our software. The attendees should include not only people working in the same area, but a small cross-section of experienced engineers from other areas. Get a pool of, say, 20 experienced engineers and perhaps 3 at a time would sit in on code reviews together with the other people working in that area.

Code reviews will help in many ways -- the engineer presenting the code will have to understand it thoroughly to present it, others will learn about it, and outside observers will provide different ways to look at the problems.

The most important thing should be the focus -- we're trying to make the code better and faster, not to make it more general, or have new features, or be more reusable, or better structured.

For complex problems, the walk-through should also include some general design review. Are these daemons really necessary? Do we really need this feature? And so on.

Fixing Bugs:

The code walk-throughs will obviously tend to turn up some bugs, so they'll serve a dual purpose.

With 500 or so priority 1 and 2 bugs, we must prioritize these as well. A bug that causes a system crash only on machines with some rare hardware configuration is properly classified priority 1, but it's probably less important than a bug in a popular program like Showcase that causes you to lose your file every tenth time, which would normally rank as priority 2. The effort involved in the fix should also be taken into account. For bugs of equal frequency of occurrence, it's probably better to fix 20 priority 2 bugs than 1 priority 1 bug if the priority 2 bugs are 20 times easier to fix.

A bunch of bugs can be eliminated by getting rid of features. Let's have the courage to cut some of the fat.

WHAT TO DO -- LONG TERM

"Software quality is not a crime."

-- Unknown (seen on a poster in building 7)
It's easy to go on forever here, but I'll try to limit it to a few key ideas. We don't have to do all these at once, but we'd better start.

· Have an overall SGI software plan.

· Let's get an architect, or at least a small group of highly technical people, not just managers, to agree on plans for releases. In fact, since the release is a company-wide project, there ought to be company-wide participation in the decisions of what's in a release. The group should include marketing, documentation, engineering, and management and should come up with a compromise that's reasonable to all.

· In every case, some attempt must be made to check reasonableness all the way to the bottom. There's a long series of excuses, "Well, that's what my junior VPs told me.", or "That's what my directors/managers/lead engineers/engineers told me." We get killed by the optimist effect, and a disinclination to listen seriously to anyone but our direct reports. Try to imagine the guts it takes for an engineer to go to his director and say: "My manager's out of his mind -- I can't possibly do what he's promised."

· Let's try to concentrate on performance and quality, not on new features, especially for the 5.1.2 release. I know from my own experience that when I write good code, I spend 10% of the time adding features, and 90% debugging and tuning them. It's the only way to make quality software. In SGI's recent releases, the opposite proportions are often the rule. It's much easier to add 100 really neat features that don't work than to speed up performance by 1%.

· Aim for simplicity in design, not complexity. Make a few things work really well; don't have 1000 flaky programs.

· Be willing to cut features; who's going to be more pissed off: a customer who was promised a feature that doesn't appear, or the same customer who gets the promised feature, and after months of struggling with it, discovers he can't make it work?

· Get better agreement between the top level VPs and the lowest engineers that a given schedule is reasonable.

· For new development, continue the formal design reviews and code walk-throughs. These shouldn't just happen once in the development cycle -- things are bound to change, and code reviews can be very valuable, even for our experienced programmers.

ACKNOWLEDGEMENTS

I take full responsibility for the opinions contained herein, but I'd like to thank Mark Segal, Rosemary Chang, Mary Ann Gallager, Jackie Neider, Sharon Fischler, Henry Moreton, and Jon Livesey for suggestions and comments.

The Original Author Responds

I am the author of the original memo below, which was intended for internal Silicon Graphics use only, and was not for anyone outside the company. But since it has been leaked to the net, and is beginning to be used by competitor's sales people, I feel a response is required.

I don't believe that these problems are unique to Silicon Graphics. From discussions with friends who are insiders in many different companies, I am certain that similar memos could be written about the software of each of our competitors.

What I like about working for Silicon Graphics is that at least here, something is being done about it -- I worked for companies in the past where the response would have been to stick our heads in the sand in hopes that the problems would just fix themselves. If I hadn't thought that the memo would catalyze some change here, I wouldn't have written it.

The details appear as comments to my original article below. Luckily, the article is 6 months old, and we have had a chance to make some significant progress.

Typically, what happens is that each faster generation of hardware is followed by software that more than compensates for the increased speed, but as a result of this memo, Silicon Graphics has been able to skip one of the slowing software cycles, making, instead, a performance and quality based release. The next release is going to be similar, and in the meantime, we get an extra hardware boost from the faster R4600 processors.

-- Tom Davis, Silicon Graphics

General comments:

As a fairly direct result of this memo, SGI decided not to continue "business as usual" in software development. The approach we took to the problem was the following:

With the 4.0.5abcdefghi... fiasco, and the fact that the 5.* releases were still for specific machines, our developers were desperate for an all-platforms release. We decided to make such a release relatively soon -- and 5.2 actually MRed in February. The 5.2 release had two goals -- primarily, all-platform, and given that it went out in February, do as much performance-tuning and bug-fixing as time allowed.

In that period, the performance on 16MB systems was essentially doubled, which improved performance on larger systems as well, but to a lesser degree. Significant numbers of bugs were fixed as well.

Some people hoped that a few quick fixes would bring back all the performance in 5.2, but a little investigation indicated that was a list of things to be done, and that another quality release would be required.

The 5.3 release, not officially scheduled, but which should be MRed around October or November is that quality (performance and bug-fix) release. We'll add a few new features, but they will be the exception rather than the rule. The longer time before the 5.3 release should give us time to do a thorough job of solving our problems.

For 5.3, there's also time to set up solid performance and bug-fixing goals, and these are already being discussed.

And most important -- the worst problems were with 16 MB systems that paged their brains out. They are better now, but not great. But we don't sell them. One of the 5.3 goals is to improve performance (or reduce sizes enough) that it will be acceptable on a 16 MB machine.

The kernel memory leaks are all fixed, and many of the important programs have been reduced in size. For 5.2, 5 or 6 of our most heavily-used programs were subjected to close scrutiny to find out where the performance went, and many were significantly improved.

A lot more work is planned for 5.3 to reduce the sizes of the executables.

Work is continuing on the DSOs to split them up properly so that they don't all have to be loaded, and to improve their performance and start-up time. We're working to make "quick-starting" happen more automatically.

PERFORMANCE UPDATE

I don't think it's unusual to do benchmarks with non-standard compiler settings. Both we and our competition have done so for a long time. We do ship all the libraries, et cetera, necessary to duplicate these results so customers for whom speed is the only objective can pay the cost of larger executables in exchange for the added speed.

Unfortunately, I can't re-run some of these tests, but 5.2 is definitely better than 5.1.

I think the 5.1 fiasco has caused a lot of our management to see the light, and in conversations with people at all levels, it's clear that nobody wants to see anything like it happen again. The 5.2 and future 5.3 releases seem to be steps in the right direction.

But there's still a lot of work to do, and we in engineering can use every minute between now and the 5.3 release to improve things.

The 5.3 release is being planned with reasonable beta-cycles, and with enough time between now and "code freeze" to make significant improvements.

Management Issues:

I think this sort of disconnect is not too unusual -- there is always enormous pressure to announce a very low entry price-point, and the 16MB system provided that. Everybody does this with the full knowledge that on a minimum system, you won't be able to run many interesting applications, and almost everyone will have to purchase a bit more memory. It's just that in the case of Indy, there were so many new features that the proposed minimal system was embarrassingly slow.

The "fix" is simply not to ship the 16MB systems which will insure that everyone will get a very usable machine. All we really lose is our low entry price point, and the gain is that we won't have to deal with the few irate customers who bought a minimal system.

Although some of our performance loss is due to more complicated features, the vast majority is due to the fact that more memory is required, and without it, the systems page with a consequent dramatic reduction in performance. The 4.0.X -> 5.X change on our large machines was measurable, but not nearly so noticeable as on the smaller ones.

We're still not completely there (as far as I can tell) with respect to better software management. The good thing is that many of our higher-level managers are acutely aware of the problem now -- Forest Baskett and Tom Jermoluk are extremely concerned, for example.

It's too bad it took a shock like 5.1 to make everybody take notice, but at least they did, and we're doing the right sorts of things to correct it.

===

Unix History

From: yee@dali.berkeley.edu (Peter E. Yee)

To: hackers_guild@ucbvax.berkeley.edu

Subject: Reprinted without permission (but worth it)

Date: 26 Mar 86 10:00:06 PST (Wed)

This month's issue of Computer Language magazine is great. They did an April Fool's issue with a lot of good material. For starters, the subscription card comes in all magazines and falls out when you open it reads:

THIS CARD IS A DAMNED NUISANCE!

Here you are ready to curl up with COMPUTER LANGUAGE and this piece of junk falls in your lap! Your choices are few. You can waste your time and energy repeatedly trying to stick it back in the magazine. OR -- you can take the easier, more satisfying route -- mail this "damned nuisance" back to us!

Inside there is a disclaimer for everything imaginable, plus some injunctions about reading the magazine on the beach, subrenting it, lending it, etc. Our lawyer has EIGHT SETS OF HANDCUFFS AND A BIG CAN OF TEARGAS in his briefcase.

Articles include such gems as "Computing at Chaos Castle" by Jerry Richnelle, "My Life as a Forth Interpreter" by K., and "Fame and Lotus-cloning in Chicago" by Dr. Hunted S. Johnson.

Aside from the obvious interest in the centerfold (Sandi Pasquale 36K - 24K - 36K), there is an article on UN*X, which I have reproduced below without permission, spelling checking, or anything else that might have been useful but time consuming.

UN*X

By Alan Filipski

The UN*X brand operating system was writting by two computer science researchers in a closet in the attic of a famous research laboratory (The Labs) in the late 1960s. The authors had complete freedom to design an operating system according to their own wishes without management constraints. This was because everyone at The Labs, including the management, thought they were janitors who spent their time in the closet wringing out mops or something.

The first version of the UN*X brand operating system was a game that simulated the gravitational motion of all known planets and satellites of our solar system. Soon such things as a file system and user procedures were grafted onto it. It ran on a PDP-7 computer that someone had stored in the closet and forgotten about.

Later the authors made the mistake of drawing attention to themselves by asking the management for a larger computer. At this, the management took the operating system and, supposing it to be something of use only to hippies (or closet hippies), sent it University of California at Berkeley.

It may be coincidental, but at the about the same time cases of a peculiar compulsive mental disorder known as Unirexia Nervosa were first noted in San Francisco, Calif. area. The symptoms of this disorder are the interjection of nonsense words such as grep, awk, runrun, and nohup by the victim into his or her speech; the misuse of ordinary words such as cat and lint; and the avoidance of the use of uppercase letters.

Advanced cases of Unirexia Nervosa have been found at many major universities throughout the U.S., where youths with pasty complexions and sunken eyes can be found late at night subsisting on diet pop, glaring fanatically at CRT's, and mumbling about "one more bugs". Since for the most part this malady has been confined to university students, it has not cause great public alarm. But recently there have been reports of regular people contracting the disease, even some who hold otherwise respectable positions in industry. The mode of transmission of Unirexia Nervosa is not known, but it is thought to have something to do with beards.

Members of the UN*X community have developed a novel and effective means of communication with each other. Suppose a user named Athol at Epizootic Systems in Cupertino, Calif., wishes to send an electronic mail message to his friend Elba at Perjorative Systems Inc. in Palo Alto, Calif. Although their computers do not communicate directly, they message may be passed via intermediate links. Athol would merely type:

mail ihnp4!allegra!ucbvax!seismo!decvax!cbosgd!ucbvax!pejor!elba

and then enter the text of his message. This electronic mail would appear at Elba's terminal either within two days of the time it takes to propagate a telephone signal 73 times between the East and West Coasts of the U.S., whichever is greater.

Although many people think the word "UN*X" is an acronym (or even a homonym), the word actually originated in the following manner. When management in The Labs noticed the strange machine running in the closet, they stopped the first technical-looking type they saw in the hall and asked him what it was. As fate would have it, it was not a technical type at all but a member of a lost Australian aboriginal tribe who had been wandering the halls of The Lab for years without drawing attention. The fellow did not understand English and believed they were asking him to haul the computer away. He replied, "UN*X(tm)," which is aboriginal for "Not my job, man." The rest is history.

The different versions of the UN*X brand operating system are numbered in a logical sequence: 5, 6, 7, 2, 2.9, 3, 4.0, III, 4.1, V, 4.2, V.2, and 4.3.

The C programming language is descended from the languages B and BCPL (short for Bucephalus, Alexander the Great's horse). It is a highly structured language. The following structured program, for example, is well-known to all C language programmers, and prints a well-known message at the terminal (try it!):

#define TWENTYNINE 29

int ll, L1, l0, h_1,q,h1,h;

main(){

for(putchar(putchar((h=7)*10+2)+TWENTYNINE);

l0?putchar(l0):!h_1;

putchar (ll),L1==2?ll=' ':0){

L1++==0?(ll=l0=54<<1):

ll=='l'&&L1<3?(ll+=1L|

1L<<1L,l0=0)

:L1==sizeof L1&&ll==' '

?(ll=19+h1):(q-=h1);

L1==5?ll-=8:q&& &

h_1;L1==sizeof ll+2?

(ll+=3):1L;ll==(h<<4)+2

&&L1!=6?(ll=ll-

6):(h1=100L);L1!=1L<<3?q--

:(h_1=ll=h1);

}

printf("%s\n",0);

}

Note the absence of goto statements in the program. Also note how the portability of the program is enhanced by judicious use of the C preprocessor and the sizeof operator. The dereferenced null pointer at the end is used to make sure the output is properly terminated.

The most commonly used UN*X interactive command language is known as the Bourne shell. (This shell was recently completely rewritten and is now available as the Bourne-again shell.) The shell provides a uniform syntax by which the user can interact with the operating system kernel and utility programs. The utility programs in turn accept a uniform syntax of command line arguments and options. Typical examples of utilities are the ar utility, which requires single-letter options that are lumped together in a specified order with an introductory minus sign, before the other arguments; and the find utility, which has multiletter options that cannot be lumped together, each of which must be preceded by a minus sign and which follow any other arguments.

Besides being used interactively, the shell itself may be used as a programming language. Although programs written in shell are slower than equivalent programs written in C, they are shorter and easier to read and debug. For example, to add 1 to a variable a in C one would have to write:

a = a + 1;

or:

a += 1;

or even:

a++;

In shell, one need only write:

a = `expr $a + 1`

where it is essential to have spaces around the + sign to use the $ sign only before the righthand occurrence of the variable a, and to use the backward quote character instead of the common single quote. When UN*X brand operating system programmers want to develop an application quickly, they often use the shell because of this convenient syntax.

Security is a very important issue in the UN*X brand operating system world. The typical UN*X brand operating system source licensee is living in a fool's paradise, little realizing that on the streets of every major city wander broken hackers who would kill for access to kernel source code. These people may be down on their luck, but they are not stupid. As you read these words, there are people who but for lack of a quarter would be whistling uucp protocols at 1200 baud to your modem from a downtown pay phone.

Therefore, the prudent administrator should be aware of common techniques used to breach UN*X brand operating system security. The most widely known and practiced attack on the security of the UN*X brand operating system is elegant in its simplicity. The perpetrator simply hangs around the system console until the operator leaves to get a drink or go to the bathroom. The intruder lunges for the console and types rm -rf / before anyone can pry his or her hands of the keyboard. Amateur efforts are characterized by typing in such things as ls or pwd. A skilled UN*X brand operating system security expert would laugh at such attempts.

The Trojan horse strategy is used in many attempts to defeat the security of a UN*X brand operating system installation. The following scenario is typical: The UN*X brand operating administrator arrives at work one afternoon and finds a new terminal outside the system security area. Since it is better than the current system console, he brings it in to the computer. After a few minutes of use, hordes of cockroaches come pouring out of the back of the terminal, driven out by the heat. The operator jumps up to stamp them out and the intruder has his will with the system.

How can this sort of damage be prevented? The greatest weakness of the UN*X brand operating system is the fact that the superuser root is so powerful. Therefore, an important principle is simple to minimize the use of root. An ingenious way of doing this is to first, without looking, set the root password of the system to some randomly generated string of character. Do not memorize or even look at this string. Now set up the /etc/inittab file with the run level 2 flag that will cause it to demand this unknown password whenever the system is booted. The system is now secure. Log off.

What can a system administrator do if he suspects that some has broken root? Simple. First, at the slightest suspicion that someone has unauthorized access to the superuser capability, immediately seal off the computer room, sound the fire alarm, release inert halon gas into the atmosphere, and activate the automatic sprinkler system. Type "shutdown 0" and cut all circuit breakers to the computer. Physically destroy all magnetic media that have ever been mounted on or associated with the insecure system in any way. Order a new distribution and reboot.

An administrator who is aware of these methods can maintain a sufficient degree of paranoia for most applications.

It has often been said that if God had a beard, he would be a UN*X programmer. While this may be an exaggeration, it is true that UN*X brand operating system is well on its way to replacing the outmoded 10- and 15-year-old operating systems in common use today.

===

The following is from the August '86 issue of the DEC Professional. It's amusing, if nothing else. I believe Dvorak is a VMS/IBM PC junkie.

Unix is Dead! Wanna Fight??

John C. Dvorak

Summer is over and a plague of UNIX programmers is upon us. College kids, wet behind the ears; greenhorns, rubes. They pour out of various campuses talking about ROFF and ED and pipes and paths, and they look for work. They're impressed with themselves. After all, they've learned the language of a secret society. If they're from Berkeley, they've learned the secret language of a secret society.

They all program in C, and wherever they go they change the prompts on whatever computer they get their hands on so it resembles a UNIX machine. They creative ones go into whatever operating system they have to use and find a symbol or token table; then they change the commands to look like UNIX. The *more* creative ones customize the commands further so they are even more cryptic and weird than UNIX. Whether these people ever do any real work is a mystery.

"Yes, weeell, to list my files I merely type P; MJOI."

"P; MJOI?? What they heck does that mean?"

"It just so happens that if I put my coffee cup on the keyboard and rock it a certain way, that's what it will type; so, I do that to list my files!"

While it's good to see these kids doing something other than wasting quarters on endless games of Pole Position, I'm not so sure UNIX dabbling is much better for society.

I feel this way, not so much because UNIX is an old-fashioned OS that has a special place reserved in hell, but because its time has passed. UNIX is dead, but no one bothered to claim the body. It lives like a zombie on college computers and serves as a gateway to all sorts of weird networks.

UNIX haunts marketing men, too. I remember when Fortune Systems was getting started. That's about the time that a bumper crop of college-bred UNIX drones was dumped like mulch into the marketplace. They all were singing the praises of UNIX to the low end of the market.

So, I went to this strategy demonstration given by one of the vice presidents of Fortune Systems. These guys surely were ahead of their time, and it was a perfect example of having too much bad information. The Fortune 16:32 (or was it 32:16? In either case it looked like a biblical reference...) said unto us: "Come to me for thine microprocessor and spend, spend, spend!" it was the first camel of microcomputers. Like a horse designed by committee (aka camel), the Fortune was preceded by too much market research. A lot of this was skewed by the hordes of UNIX maniacs running through the valley waving the UNIX flag.

First of all, I was shown a slide that clearly showed the Motorola 68000 as the world's greatest microprocessor.

The 68000 beat everything. Personally, I can't remember what it was pitted against -- probably the 8080, the 6502 and a 4004. Whatever, this was the chip to use.

Then the company did some market research and, because writers, pundits, researchers, secretaries, publishers, and programmers all said that UNIX was the next hot operating system, they chose it for their own little machine.

The UNIX community yelled, "Yea!" But, they continued to use free university-provided time, and none of the UNIX hackers bought the little UNIX boxes. Well, that was okay, it was intended to be a business machine, anyway.

Ooops! Gee, it seems that the businessmen couldn't cope with UNIX and "$ ls /bin/pr -p -t" or any other such nonsense. So they had to build a performance-sapping shell around the system, code name: SLOW. So much for the UNIX world takeover. I figured that would be the last I heard of it.

No so. Last week, a guy walked up to me as I was writing this column on a portable computer in a San Francisco bistro. he had been reading it through binoculars from across the room. "So, you don't like UNIX, huh, Dvorak? What's better, MS-DOS?? Hahahaha!"

"IBM's VM is the happening operating system," was my quick rejoinder.

"VM doesn't run on minis and micros. It's just a shell, anyway," he shot back.

"Is not!"

"Is too!"

"Is not!"

He took a swing at me and I caught him a good one in the stomach. We punched each other for a good 15 minutes. All of a sudden he stopped and yelled,

"Hey, what's going on here? Where am I? Wow, I remember my name! What happened?"

"We were fighting about UNIX," I said.

"UNIX? I was fighting about UNIX? My God...I was hypnotized!"

True story.

So, try snapping your fingers in the face of one of these UNIX maniacs next time he flies off the handle.

See what happens.

==

/*

 * Without using anything but the calculator hanging off your belt,

 * your VI quick reference card, and the LCD alarm chronograph

 * mechanical pencil in your plastic pocket reinforce-omatic, describe

 * in minute detail the output of this program. Expound in depth on

 * the cultural and historical traditions behind every race condition

 * involved, including insightful commentary on the personality quirks

 * and religious practices of the parties responsible for each kernel

 * bug you refer to in your explanation. Make sure to mention every

 * operating system release in which your comments apply. Be concise

 * and to the point. You may not blame it on the compiler. For extra

 * credit, replace the fork() with vfork().

 *

 *
-Don

 */

#include <stdio.h>

main()

{

 printf("%d\n", foo() + (foo()<<1) + (foo()<<2) + (foo()<<3));

}

foo()

{

 return(fork() ? 1 : 0);

}

Date: Sun, 1 Feb 87 21:37:25 PST

From: fair@ucbarpa.berkeley.edu (Erik E. Fair)

To: don@brillig.umd.edu

Subject: Re: Essay question

Cc: Hackers_Guild@ucbvax.berkeley.edu

Ah, I remember a perplexed Mike Karels looking at that at Ron's Party in Washington...

Erik

==

Date: Fri, 9 Jan 87 19:59:36 EST

From: Don Hopkins <don@brillig.umd.edu>

To: devon@mx.lcs.mit.edu

Subject: I see you dere on dat lisp musheen!

Cc: don@brillig.umd.edu

(jive "Enclosed for yor reading enjoyment is the result of the application of the Jive filter to a well known historical document.") "Enclosed fo' yo' eyeballin' enjoyment be de result uh de applicashun uh de Jive filta' to some sheeit knode histo'ical document."

; It's written in LEX, actually... If it were written in Lisp it would be just TOO profound.

File, dig dis: emacs Node, dig dis: Manifesto, Prev, dig dis: Bugs, Up, dig dis: Top

De GNU Manifesto

What's GNU? Gnu's Not Unix. Right On!

GNU, which stands fo' Gnu's Not Unix, be de dojigger fo' de complete Unix-compatible software system which ah' am writin' so's dat ah' can give it away free t'everyone who kin use it. Several oda' volunteers are helpin' me. What it is, Mama! Contribushuns uh time, bre'd, honky codes and equipment are greatly needed.

So far we gots' some po'table C and Pascal compila' which compiles fo' Vax and 68000 (dough needin' much rewritin'), an Emacs-likes text edito' wid Lisp fo' writin' edito' com dude ds, some yacc-compatible parsa' generato', some linker, and around 35 utilities. A shell (com dude d interpreter) be nearly completed. When de kernel and some debugga' are written, it gots'ta be possible to distribute some GNU system suitable fo' honky code development. Afta' dis we gots'ta add some text fo'matter, an Empire game, some spreadsheet, and hundreds of oda' din's, plus on-line documentashun. We hope t'sdownply, eventually, everydin' useful dat no'mally comes wid some Unix system, and mo'e. What it is, Mama!

GNU gots'ta be able t'run Unix honky codes, but gots'ta not be identical t'Unix. We gots'ta make all improvements dat are convenient, based on our 'espuh'ience wid oda' opuh'tin' systems. In particular, we plan t'gots' longer stashdojiggers, stash version numbers, some crashproof stash system, stashdojigger compleshun puh'haps, terminal-independent display sdownpo't, and eventually a Lisp-based window system drough which several Lisp honky codes and o'dinary Unix honky codes kin share some screen. 'S coo', bro. Bod C and Lisp gots'ta be available as system honky codemin' languages. We gots'ta try t'sdownpo't UUCP, MIT Chaosnet, and Internet protocols fo' communicashun.

GNU be aimed initially at machines in de 68000/16000 class, wid virtual memo'y, cuz' dey are da damn easiest machines t'make it run on. 'S coo', bro. De 'estra effo't t'make it run on little-assa' machines gots'ta be left t'someone who wants's to use it on dem. 'S coo', bro.

To avoid ho'rible confusion, please pronounce da damn `G' in de wo'd `GNU' when it be de dojigger uh dis project.

Why ah' Must Write GNU

I consida' dat da damn golden rule requires dat if ah' likes some honky code ah' must share it wid oda' sucka's who likes it. Software sellers wanna divide de users and conqua' dem, makin' each usa' agree not t'share wid oders. ah' refuse t'boogie solidarity wid oda' users in dis way. Slap mah fro! I cannot in baaaad conscience sign some nondisclosho' nuff agreement o' some software license agreement. Fo' years ah' wo'ked widin de Artificial Intelligence Lab t'resist such tendencies and oda' inhospitalities, but eventually dey had gone too far, dig dis: ah' could not remain in an institushun where such din's are done fo' me against mah' will.

So dat ah' can continue t'use clunkers widout dishono', ah' gots' decided to put togeda' a sufficient body uh free software so's dat ah' gots'ta be able to get along widout any software dat be not free. What it is, Mama! ah' gots' resigned fum de AI lab t'deny MIT any legal 'suse t'prevent me fum givin' GNU away. Slap mah fro!

Why GNU Will Be Compatible wid Unix

Unix be not mah' ideal system, but it be not too bad-ass. De essential features of Unix seem t'be baaaad ones, and ah' dink ah' can fill in whut Unix lacks widout spoilin' dem. 'S coo', bro. And some system compatible wid Unix would be convenient fo' dude y oda' sucka's t'adopt.

How GNU Will Be Available

GNU be not in de public domain. 'S coo', bro. Everyone gots'ta be puh'mitted t'modify and redistribute GNU, but no distributo' gots'ta be allowed t'restrict its furda' redistribushun. Dat be to say, proprietary modificashuns gots'ta not be allowed. ah' wanna make sho' nuff dat all versions uh GNU remain free. What it is, Mama!

Why Many Oda' Programmers Want t'Help

I gots' found dude y oda' honky codemers who are 'sited about GNU and wanna help.

Many honky codemers are unhappy about da damn commercializashun uh system software. What it is, Mama! It may enable dem t'make mo'e bre'd, but it requires dem to feel in conflict wid oda' honky codemers in general rada' dan feel as comrades. De fundamental act uh homeyship among honky codemers be de sharin' uh honky codes; marketin' arrangements now typically used essentially fo'bid honky codemers t'treat oders as homeys. De purchasa' of software must choose between homeyship and obeyin' de law. Naturally, dude y decide dat homeyship be mo'e impo'tant. But dose who recon' in law often do not feel at ease wid eida' choice. What it is, Mama! Dey become cynical and dink dat honky codemin' be plum a way uh makin' bre'd.

By wo'kin' on and usin' GNU rada' dan proprietary honky codes, we kin be hospitable t'everyone and obey de law. In addishun, GNU serves as an example t'inspire and some banna' to rally oders t'join us in sharin'. Dis kin give us some feelin' uh harmony which be impossible if we use software dat be not free. What it is, Mama! Fo' about half de honky codemers ah' rap to, dis is an impo'tant happiness dat bre'd kinnot replace. What it is, Mama!

How You's Can Contribute

I's gots'ta be ax'in' clunker dude ufacturers fo' donashuns uh machines and bre'd. I'm ax'in' individuals fo' donashuns uh honky codes and wo'k.

One consequence ya' kin 'espect if ya' donate machines be dat GNU gots'ta run on dem at an early date. What it is, Mama! De machines should be complete, eyebally t'use systems, approved fo' use in some residential area, and not in need of sophisticated coolin' o' power. Ah be baaad...

I gots' found real dude y honky codemers eaga' to contribute part-time wo'k fo' GNU. Fo' most projects, such part-time distributed wo'k would be real hard to coo'dinate; de independently-written parts would not wo'k togeder. Ah be baaad... But fo' de particular tax' uh replacin' Unix, dis problem be absent. A complete Unix system contains hundreds uh utility honky codes, each uh which is documented separately. Slap mah fro! Most interface specificashuns are fixed by Unix compatibility. Slap mah fro! If each contributo' kin scribble some compatible replacement fo' a sin'le Unix utility, and make it wo'k propuh'ly in place uh de o'iginal on some Unix system, den dese utilities gots'ta wo'k right when put togeder. Ah be baaad... Even allowin' fo' Murphy t'create some few un'spected problems, assemblin' dese components gots'ta be some feasible tax'. (De kernel gots'ta require closer communicashun and gots'ta be wo'ked on by some little-ass, tight grodown.)

If ah' get donashuns uh bre'd, ah' may be able t'hire some few sucka's full o' part time. What it is, Mama! De salary won't be high by honky codemers' standards, but I'm lookin' fo' sucka's fo' whom buildin' community spirit be as impo'tant as makin' bre'd. ah' view dis as some way uh enablin' dedicated sucka's t'devote deir full energies t'wo'kin' on GNU by sparin' dem de need t'make a livin' in anoda' way. Slap mah fro!

Why All Computa' Users Will Benefit

Once GNU be written, everyone gots'ta be able t'obtain baaaad system software free, plum likes air. Ah be baaad...

Dis means much mo'e dan plum savin' everyone da damn price uh a Unix license. What it is, Mama! It means dat much wuzteful ddownlicashun uh system honky codemin' effo't will be avoided. Dis effo't kin go instead into advancin' de state uh de art.

Complete system sources gots'ta be available t'everyone. What it is, Mama! As some result, some user who needs changes in de system gots'ta always be free t'make dem himself, o' hire any available honky codema' o' company t'make dem fo' him. 'S coo', bro. Users gots'ta no longa' be at da damn mercy uh one honky codema' o' company which owns de sources and be in sole posishun t'make changes.

Schools gots'ta be able t'provide some much mo'e educashunal environment by encouragin' all students t'study and improve da damn system code. What it is, Mama! Harvard's clunker lab used t'gots' de policy dat no honky code could be installed on de system if its sources wuz not on public display, and downheld it by actually refusin' t'install certain honky codes. ah' wuz real much inspired by dis.

Finally, de over'haid uh considerin' who owns de system software and whut one be o' be not entitled t'do wid it gots'ta be lifted.

Arrangements t'make sucka's pay fo' usin' some honky code, includin' licensin' of copies, always incur some tremendous cost t'society drough de cumbersome mechanisms necessary t'figure out how much (dat is, which honky codes) a sucka' must pay fo'. And only some honky pigs state kin fo'ce everyone t'obey dem. 'S coo', bro. Consida' a space stashun where air must be dude ufactured at great cost, dig dis: chargin' each breada' puh' lita' of air may be fair, but wearin' de metered gas max' all day and all night be intolerable even if everyone kin affo'd t'pay de air bill. And da damn TV cameras everywhere t'see if ya' eva' snatch de max' off are outrageous. It's betta' to sdownpo't da damn air plant wid some 'haid tax and chuck de max's.

Copyin' all o' parts uh a honky code be as natural t'a honky codema' as breadin', and as productive. What it is, Mama! It ought t'be as free. What it is, Mama!

Some Easily Rebutted Objecshuns t'GNU's Goals

"Nobody gots'ta use it if it be free, cuz' dat means dey kin't rely on any sdownpo't."

"You's gots'ta charge fo' de honky code t'pay fo' providin' de sdownpo't."

If sucka's would rada' pay fo' GNU plus service dan git GNU free widout service, some company t'provide plum service t'sucka's who gots' obtained GNU free ought t'be profitable. What it is, Mama!

We must distin'uish between sdownpo't in de fo'm uh real honky codemin' wo'k and mere handholdin'. De fo'ma' is sump'n one kinnot rely on fum a software vendo'. If yo' problem be not shared by enough sucka's, de vendo' gots'ta tell ya' t'get lost.

If yo' business needs t'be able t'rely on sdownpo't, de only way be to gots' all de necessary sources and tools. Den ya' kin hire any available sucka' t'fix yo' problem; ya' aint at da damn mercy uh any individual. Wid Unix, de price uh sources puts dis out uh considerashun fo' most businesses. Wid GNU dis gots'ta be easy. Slap mah fro! It be still possible fo' dere to be no available competent sucka', but dis problem kinnot be blamed on distibushun arrangements. GNU duz not eliminate all de wo'ld's problems, only some uh dem. 'S coo', bro.

Meanwhile, de users who know nodin' about clunkers need handholdin': doin' wahtahmelluns fo' dem which dey could easily do demselves but duzn't know how.

Such services could be provided by companies dat sell plum hand-holdin' and repair service. What it is, Mama! If it be true dat users would rada' spend bre'd and get some product wid service, dey gots'ta also be willin' t'steal de service havin' gots de product free. What it is, Mama! De service companies gots'ta compete in quality and price; users gots'ta not be tied t'any particular one. What it is, Mama! Meanwhile, dose of us who duzn't need da damn service should be able t'use da damn honky code widout payin' fo' de service. What it is, Mama!

"You's kinnot reach dude y sucka's widout advertisin', and ya' must charge fo' de honky code t'sdownpo't dat."

"It's no use advertisin' some honky code sucka's kin git free. What it is, Mama!"

Dere are various fo'ms uh free o' real cheap publicity dat kin be used to info'm numbers uh clunker users about sump'n likes GNU. But it may be true dat one kin reach mo'e microclunker users wid advertisin'. If dis is really so, some business which advertises de service uh copyin' and mailin' GNU fo' some fee ought t'be successful enough t'pay fo' its advertisin' and mo'e. What it is, Mama! Dis way, only de users who benefit fum de advertisin' pay fo' it.

On de oda' hand, if dude y sucka's git GNU fum deir homeys, and such companies duzn't succeed, dis gots'ta show dat advertisin' wuz not really necessary t'spread GNU. Why be it dat free market advocates duzn't wants' to let da damn free market decide dis?

"My company needs some proprietary opuh'tin' system t'get some competitive edge. What it is, Mama!"

GNU gots'ta remove opuh'tin' system software fum de realm uh competishun. You's gots'ta not be able t'get an edge in dis area, but neida' gots'ta yo' competito's be able t'get an edge ova' ya'. You's and dey gots'ta compete in oda' areas, while benefittin' mutually in dis one. What it is, Mama! If yo' business is sellin' an opuh'tin' system, ya' gots'ta not likes GNU, but dat's tough on ya'. If yo' business be sump'n else, GNU kin save ya' fum bein' pushed into de 'espensive business uh sellin' opuh'tin' systems.

I would likes t'see GNU development sdownpo'ted by gifts fum dude y dude ufacturers and users, reducin' de cost t'each.

"Don't honky codemers deserve some reward fo' deir creativity?"

If anydin' deserves some reward, it be social contribushun. Creativity kin be some social contribushun, but only in so's far as society be free t'use de results. If honky codemers deserve t'be rewarded fo' creatin' innovative honky codes, by de same token dey deserve t'be punished if dey restrict de use uh dese honky codes.

"Shouldn't some honky codema' be able t'ax' fo' some reward fo' his creativity?"

Dere be nodin' wrong wid wants'in' pay fo' wo'k, o' seekin' t'maximize one's income, as long as one duz not use means dat are destructive. What it is, Mama! But de means customary in de field uh software today are based on destrucshun.

Extractin' bre'd fum users uh a honky code by restrictin' deir use uh it is destructive cuz' de restricshuns reduce da damn amount and da damn ways dat de honky code kin be used. Dis reduces de amount uh weald dat hu dude ity derives fum de honky code. When dere be a deliberate choice t'restrict, de harmful consequences are deliberate destrucshun.

De reason some baaaad citizen duz not use such destructive means t'become wealdia' is dat, if everyone dun did so, we would all become poo'a' from de mutual destructiveness. Dis be Kantian edics; o', de Golden Rule. What it is, Mama! Since ah' do not likes de consequences dat result if everyone ho'ds info'mashun, ah' am required t'consida' it wrong fo' one t'do so. Specifically, de desire t'be rewarded fo' one's creativity duz not justify deprivin' de wo'ld in general uh all o' part uh dat creativity. Slap mah fro!

"Won't honky codemers starve?"

I could answa' dat nobody be fo'ced t'be some honky codemer. Ah be baaad... Most uh us kinnot dude age t'get any bre'd fo' standin' on de street and makin' faces. But we aint, as some result, condemned t'spend our lives standin' on de street makin' faces, and starvin'. We do sump'n else. What it is, Mama!

But dat be de wrong answa' a'cuz it accepts de quesshuner's implicit assumpshun: dat widout ownership uh software, honky codemers kinnot possibly be paid some cent. Sdownposedly it be all o' nodin'.

De real reason honky codemers gots'ta not starve be dat it gots'ta still be possible fo' dem t'get paid fo' honky codemin'; plum not paid as much as now.

Restrictin' copyin' be not da damn only basis fo' business in software. What it is, Mama! It is de most common basis cuz' it brin's in de most bre'd. If it wuz prohibited, o' rejected by de customer, software business would move to oda' bases uh o'ganizashun which are now used less often. 'S coo', bro. Dere are always numerous ways t'o'ganize any kind'a business.

Probably honky codemin' gots'ta not be as lucrative on de new basis as it is now. But dat be not an argument against da damn change. What it is, Mama! It be not considered an injustice dat sales clerks make da damn salaries dat dey now do. If honky codemers made da damn same, dat would not be an injustice eider. Ah be baaad... (In practice dey would still make considerably mo'e dan dat.)

"Don't sucka's gots' some right t'control how deir creativity be used?"

"Control ova' de use uh one's ideas" really constitutes control over oda' sucka's's lives; and it be usually used t'make deir lives mo'e difficult.

People who gots' studied da damn issue uh intellectual propuh'ty rights carefully (such as lawyers) say dat dere be no intrinsic right t'intellectual propuh'ty. Slap mah fro! De kinds uh sdownposed intellectual propuh'ty rights dat de guv'ment recognizes wuz created by specific acts uh legislashun fo' specific purposes.

Fo' 'esample, de patent system wuz established t'encourage invento's to disclose da damn details uh deir invenshuns. Its purpose wuz t'help society rada' dan t'help invento's. At da damn time, de life span uh 17 years fo' a patent wuz sho't compared wid de rate uh advance uh de state uh de art. Since patents are an issue only among dude ufacturers, fo' whom de cost and effo't uh a license agreement are little-ass compared wid settin' down producshun, de patents often do not do much harm. 'S coo', bro. Dey do not obstruct most individuals who use patented products.

De idea uh copyright dun did not 'esist in ancient times, when audo's frequently copied oda' audo's at lengd in wo'ks uh non-ficshun. Dis practice wuz useful, and be de only way dude y audo's' wo'ks gots' survived even in part. De copyright system wuz created 'espressly fo' de purpose of encouragin' audo'ship. In de domain fo' which it wuz invented---scribblin's, which could be copied economically only on some printin' press---it dun did little harm, and dun did not obstruct most uh de individuals who eyeball de scribblin's.

All intellectual propuh'ty rights are plum licenses granted by society a'cuz it wuz dought, rightly o' wrongly, dat society as some whole would benefit by grantin' dem. 'S coo', bro. But in any particular situashun, we gots'ta ax': are we really betta' off grantin' such license? What kind'a act are we licensin' some sucka' t'do?

De case uh honky codes today be very different fum dat uh scribblin's some hundred years ago. De fact dat da damn easiest way t'copy some honky code be from one neighbo' t'anoder, de fact dat some honky code gots'ta bod source code and object code which are distinct, and da damn fact dat some honky code be used rader dan eyeball and enjoyed, combine t'create some situashun in which some sucka' who enfo'ces some copyright be harmin' society as some whole bod materially and spiritually; in which some sucka' should not do so's regardless uh wheda' de law enables him to.

"Competishun makes wahtahmelluns git done better. Ah be baaad..."

De paradigm uh competishun be a race, dig dis: by rewardin' de winner, we encourage everyone t'run faster. Ah be baaad... When capitalism really wo'ks dis way, it duz some baaaad job; but its defenders are wrong in assumin' it always wo'ks dis way. Slap mah fro! If de runners fo'get why de reward be offered and become intent on winnin', no matta' how, dey may find oda' strategies---such as, attackin' oda' runners. If de runners git into some fist fight, dey will all finish late. What it is, Mama!

Proprietary and secret software be de mo'al equivalent uh runners in a fist fight. Sad t'say, de only referee we've gots duz not seem to object t'fights; he plum regulates dem ("Fo' every ten yards ya' run, ya' kin fire one shot"). He really ought t'boogie dem down, and penalize runners fo' even tryin' t'fight.

"Won't everyone stop honky codemin' widout some monetary incentive?"

Actually, dude y sucka's gots'ta honky code wid absolutely no monetary incentive. What it is, Mama! Programmin' gots'ta an irresistible fascinashun fo' some sucka's, usually de sucka's who are best at it. Dere be no sho'tage uh professional beatians who keep at it even dough dey gots' no hope uh makin' some livin' dat way. Slap mah fro!

But really dis quesshun, dough commonly ax'ed, be not appropriate t'de situashun. Pay fo' honky codemers gots'ta not disappear, only become less. So de right quesshun is, gots'ta anyone honky code wid some reduced monetary incentive? My 'espuh'ience shows dat dey will.

Fo' mo'e dan ten years, dude y uh de wo'ld's best honky codemers wo'ked at de Artificial Intelligence Lab fo' far less bre'd dan dey could gots' had anywhere else. What it is, Mama! Dey gots dude y kinds uh non-monetary rewards, dig dis: fame and appreciashun, fo' 'esample. What it is, Mama! And creativity be also fun, some reward in itself. What it is, Mama!

Den most uh dem left when offered some chance t'do de same interestin' wo'k fo' some lot uh bre'd.

What da damn facts show be dat sucka's gots'ta honky code fo' reasons oda' dan riches; but if given some chance t'make some lot uh bre'd as sheeit, dey will come t''spect and de dude d it. Low-payin' o'ganizashuns do poo'ly in competishun wid high-payin' ones, but dey do not gots'ta do bad-assly if de high-payin' ones are banned.

"We need da damn honky codemers despuh'tely. Slap mah fro! If dey de dude d dat we stop helpin' our neighbo's, we gots'ta obey. Slap mah fro!"

Youse neva' so despuh'te dat ya' gots'ta obey dis radical de dude d. Remember, dig dis: millions fo' defense, but not some cent fo' tribute. Right On!

"Programmers need t'make some livin' somehow."

In de sho't run, dis be true. What it is, Mama! However, dere are plenty uh ways dat honky codemers could make some livin' widout sellin' de right t'use some honky code. Dis way be customary now cuz' it brin's honky codemers and businessmen de most bre'd, not cuz' it be de only way t'make some livin'. It be easy to find oda' ways if ya' wanna find dem. 'S coo', bro. Here are some numba' of 'esamples.

A dude ufactura' introducin' some new clunker gots'ta pay fo' de po'tin' of opuh'tin' systems onto de new hardware. What it is, Mama!

De sale uh teachin', hand-holdin' and maintenance services could also employ honky codemers.

People wid new ideas could distribute honky codes as freeware, ax'in' fo' donashuns fum satisfied users, o' sellin' hand-holdin' services. ah' gots' met sucka's who are already wo'kin' dis way successfully. Slap mah fro!

Users wid related needs kin fo'm users' grodowns, and pay dues. A grodown would contract wid honky codemin' companies t'scribble honky codes dat de grodown's members would likes t'use. What it is, Mama!

All so'ts uh development kin be funded wid some Software Tax, dig dis:

Sdownpose everyone who steals some clunker gots'ta t'pay x puh'cent of de price as some software tax. De guv'ment gives dis to an agency likes de NSF t'spend on software development.

But if de clunker steala' makes some donashun t'software development himself, he kin snatch some credit against da damn tax. He kin donate to de project uh his own choosin'---often, chosen cuz' he hopes to use da damn results when it be done. What it is, Mama! He kin snatch some credit fo' any amount uh donashun down t'de total tax he had t'pay. Slap mah fro!

De total tax rate could be decided by some vote uh de payers of de tax, weighted acco'din' t'de amount dey gots'ta be taxed on. 'S coo', bro.

De consequences, dig dis:

· De clunker-usin' community sdownpo'ts software development.

· Dis community decides whut level uh sdownpo't be needed.

· Users who care which projects deir share be spent on kin choose dis fo' demselves.

In de long run, makin' honky codes free be a step toward da damn post-scarcity wo'ld, where nobody gots'ta t'wo'k real hard plum to make some livin'. People gots'ta be free t'devote demselves t'activities dat are fun, such as honky codemin', afta' spendin' de necessary ten hours some week on required tax's such as legislashun, family counselin', robot repair and asteroid prospectin'. Dere gots'ta be no need t'be able t'make some livin' fum honky codemin'.

We gots' already greatly reduced da damn amount uh wo'k dat da damn whole society must do fo' its actual productivity, but only some little uh dis gots'ta translated itself into leisho' nuff fo' wo'kers cuz' much nonproductive activity be required t'accompany productive activity. Slap mah fro! De main causes of dis are bureaucracy and isometric struggles against competishun. Free software gots'ta greatly reduce dese drains in de area uh software producshun. We must do dis, in o'da' fo' technical gains in productivity to translate into less wo'k fo' us.

page 1

