Several Vim tricks:

  :help

  .vimrc file

  :split  (then use CTRL-Wj , CTRL-Wk to jump between them)

  :split file.txt - splits the window and opens file.txt

  v – enter the visual mode. you can then highlight a block a text and then execute a Vim editing command such as d, y, or > on it. The v command selects text by character. The CTRL-V command selects text as a block. The V command selects line. 

  :set incsearch – search as you type

  :set hlsearch – search highlighting

  :set cindent - turns on C style indentation

You can define abbreviations in .vimrc, for example:

  :ab #b /******************************

  :ab #e ^V^H******************************/

This defines two abbreviations. By typing "#b" we type the top of a boxed comment. Typing "#e" types the bottom line. (We put the ^V^H^V^H in the file to backup over the comment leader.)

Word Completion - when your typing and you enter a partial word, you can cause Vim to search for a completion by using the ^P (search for previous marching word) and ^N (search for next match). 

File saving, reverting, quitting 

:w  save changes to file 'fname' 

:w  fname  save changes to file 'fname' 

:wq  exit, saving changes (same as :x   or  :ZZ ) 

:q     quit (will quit if no changes made) 

:q!    discard changes and quit 

:e!    discard changes (revert to previous saved version) 

Inserting text

i , I      insert before cursor, before line 

a , A      append after cursor, after line 

o , O      open new line after, line before 

r , R      replace one char, many chars 

Motion 

h , j , k , l    left, down, up, right (also arrows) 

w , W            forward next word, blank delimited word 

e , E            forward end of word, of blank delimited word 

b , B            backward beginning of word, of blank delimited word 

( , )            sentence back, forward 

{ , }           paragraph back, forward 

0 , $            beginning, end of line 

1G , G           beginning, end of file 

nG or :n         line n 

fc , Fc          forward, back to char c 

H , M , L        top, middle, bottom of screen 

Deleting text: 

dw - deletes a word (type d followed by a motion) 

dd          line 

:d          line 

x , X       character to right, left 

D           to end of line 

Yanking text (copying in a buffer): 

- type y followed by a motion. y$ - yanks to the end of line. 

yy         line 

:y         line 

Changing text: 

- The change command  is performed by typing c followed by a motion. It is effectively a deletion command that leaves the editor in insert mode. 

  cw - change a word 

  C          to end of line 

  cc         line 

Putting text:

  p    put yanked text after position or after line 

  P    put before position or before line 

Bufers:

- Named buffers may be specifed before any deletion, change, yank, or put command. "c - named buffer c (may be any lower case letter) 

  "adw - deletes a word into buffer a 

  "ap - put the contents of the buffer back in the page 

Markers: 

- Named markers may be set on any line of a file. Any lower case letter may be a marker name. Markers may also be used as the limits for ranges. mc     set marker c on this line 

  `c     goto marker c 

  'c     goto marker c first non-blank 

Example:

copy  /  paste a block of text: Put cursor on the first character of the block and set marker 'm': 

  mm 

Move cursor to the position right after the last character of the block. 

Yank from this position back to the marker 'm'  into a named buffer 'b': 

  "by`m 

("b - defines a buffer,  y - yank command,  `m - moves to the marker) 

Now move to some other place and put the buffer after the cursor: 

  "bp

Example:

cut /paste a block of text: 

Put cursor on the first character of the block and set marker 'm': 

mm 

Move cursor to the position right after the last character of the block. 

Yank from this position back to the marker 'm'  into a named buffer 'b': 

"bd`m 

("b - defines a buffer,  d - delete command,  `m - moves to the marker) 

Now move to some other place and put the buffer after the cursor: 

"bp

Example:

copy/paste in vim using visual mode: v - mark first character of the block 

move the cursor to the end 

y - mark last character of the block and yank block to this point (or "d" to delete to this point) 

move the cursor to some other place 

gp - put the block starting on the line immediately after the cursor  

       (or use "p"or "P" to put on the next/previous line - as in vi) 

vawy - copy a word 

vaby - copy a ( .. ) block 

vaBy - copy a { .. } block

Search for Strings: 

/string    search forward 

?string    search backward 

n , N      repeat search in same, reverse direction 

:se ic     set ignore case for searches 

:se noic   back to case sensitive searches 

Shift-5    jump between matching parenthesis (or curlies or brackets) 

Replace:

 :s/pattern /string /flags  -  replace pattern with string 

The search and replace function is accomplished with the :s command. It is commonly used in combination with ranges or the :g command (below). 

flags: 

g , c     all on each line, confirm each 

&         repeat last :s command 

Example:

how to find/replace in all the file (2 methods): :%s/from/to/g 

:g/from/s//to/g 

Regular Expressions:

. (dot)       any single character except newline 

*             zero or more repeats 

[...]         any character in set 

[^ ...]       any character not in set 

^ , $         beginning, end of line 

\< , \>       beginning, end of word 

\(: : :\)    grouping (putting into memory) 

\n            contents of n th grouping (recalling from memory) 

Counts: 

Nearly every command may be preceded by a number that specifies how many times it is to be performed. For example 5dw will delete 5 words and 3fe will move the cursor forward to the 3rd occurance of the letter e. Even insertions may be repeated conveniently with this method, say to insert the same line 100 times. 

Ranges: 

Ranges may precede most "colon" commands and cause them to be executed on a line or lines. For example :3,7d would delete lines 3-7. Ranges are commonly combined with the :s command to perform a replacement on several lines, as with :.,$s/pattern/string/g to make a replacement from the current line to the end of the file. :n ,m        lines n-m 

:.           current line 

:$           Last line 

:?c          Marker c 

:%           All lines 

:g/pattern/  All matching lines 

Files:

:w file      Write file (current file if no name given): 

:r file      Read file after line 

:n           Next file 

:p           Previous file 

:e file      Edit file 

:e!    re-read current file (discard changes) 

!!program    Replace line with program output 

:r!command read in an output of shell command, for example: 

:r!which perl 

Other:

J     join lines 

.     repeat last text-changing command 

u     undo last change 

U     undo all changes on line 

ctrl-L    refresh the window 

Examples: 

How to find/replace in all the file (2 methods): :%s/from/to/g 

:g/from/s//to/g 

for example: 

:g/<tab>/s//<space><space>/g

How to comment out current line and all following lines:   . = current line 

  $ = end of file 

  .,$ = here to end 

  %s = whole file 

so sepending what you wanna do, try something like 

  :%s/^/# / to comment 

  :%s/^# // to uncomment 

Here is how to do the same substituting the whole string 

(just to demonstrate the use of memory variable \1) 

:.,$s/\(.*\)/# \1/    to comment 

:.,$s/^# \(.*\)/\1/   to uncomment 

How to repeat insert 50 times: 50i-<ESC> - will repeat '-'50 times 

Note: you can repeat not only one character, but any text you type between 'i' and pressing <ESC> 

Inserting <ctrl-character> - press <ctrl-v> - then <ctrl-character> 

mapping tab as  2 spaces: :map!<space><ctrl-v><ctrl-v><ctrl-v><ctrl-i><space><ctrl-v><ctrl-v><ctrl-v><space><ctrl-v><ctrl-v><ctrl-v><space> 

Explanation: 

The format is:      :map! <key> <substitution> 

For example:       :map! h hello 

To enter a control character you have to precede it with <ctrl-v>. 

To enter this <ctrl-v> itself - you should precede it with <ctrl-v> too.

I am programming on Linux using vim. My favorite settings in the file   .vimrc:

:syntax on 

:se ts=2 

:map! ^V   ^V ^V 

