
Project Management

Main Ideas:

• Crystal clear understanding of the requirements. Involve all business stakeholders into the

planning process. Make sure they agree on the plan.

• Crystal clear understanding of priorities: what is important – and what is "nice to have".

• Concentrate only on important features, sacrifice the rest.

• Simplifty, simplify, simplify.

• Split big job into small pieces, small steps.

• Grow project as a child from few features to full-featured product.

• Military hierarchical management is not effective. Respect workers, leverage their brains,

give them freedom to be effective, to communicate and collaborate.

• Give people tasks that match their abilities.

• Create safe and engaging atmosphere.

Project Management

• Begin with the end in mind
• Splitting Big Problems Into Small Doable Steps
• Split project into "buckets" (write book in 2 weeks)
• First Principles Thinking
• Simplicity
• Unix – simplicity
• Unix – toolbox vs monolitic application
• Dinosaurs
• Simplicity vs politics
• Growing a project as a child
• Hacker vs Architect
• Create "Clickable Dummy"
• from Waterfall to Agile
• Scrum

• Project Mаnagement Process
• DevOps
• Simple PM tools
• Vision and Enthusiasm
• Unique Abilities
• Self-management, Holacracy
• Parkinson Law
• Brooks Law
• Peter Drucker
• One Minute Manager
• One Minute Manager Meets the Monkey
• Power and Mindset
• "Getting Things Done" - by David Allen
• Quotes about managing people
• Thomas F. Gilbert - Human Performance Technology

Table of Contents:

Begin With the End in Mind

Main ideas in his book:

• One must begin with the customers in the form of
interviews and research discovery

• Building an MVP (Minimum viable product)
and then testing and iterating quickly

• Ries also recommends using a process called the Five Whys,
(Why ..., Why ..., Why ..., Why ..., Why ...)
a technique designed to reach the core of an issue

Eric Ries

Ries has experienced two startups failures,
and attribute the error in both cases as
"working forward from the technology
instead of working backward from the
business results you're trying to achieve."

Habit 2: Begin With the End in Mind
from "The 7 Habits of Highly Effective
People" by Stephen Covey

All 7 habits:
1. be proactive
2. begin with the end in mind
3. put first things first
4. think win-win
5. seek first to understand, then to be understood
6. synergize
7. sharpen the saw

Splitting Big Problems Into Small Doable Steps
When I was a student (in Moscow, Russia, 1975), we were sent to
suburbs to collect vegetables (carrots). The task was simple. We were
separated in pairs, and each pair had a ~120 meters long row of carrots to
collect in 1 day. There was 6 pairs starting side-by-side like runners at a
sport competition. At the end of the day nobody finished even 50% of their
norm. It was taking 2 days to finish the norm.

This continued for several days, and then our manager (who was a 1st
year post-graduate student) made a very simple and very magical
change. He simply split one long row into 6 short rows. Each pair of
students now received a set of 6 rows 20 meter each.

You can ask – what's the difference?
Well, this day the whole field was finished by 2 pm !

It took only 5 hours to do what before was taking 2 full days (16 hours) !
This is 3-times increase in productivity.

Without any incentives !

I can tell you how it felt.

You start working on one row - and pretty soon you see that you can reach
its middle in a short time. So you decide to take a break at the middle.

But when you reach it - you could see that it is actually very easy to finish the
row - and then take a break. And when you finished the 1st row - you see
that now only 5 left. So you estimated how long it took you to finish the
previous row - so you can tell when you will finish the next row. etc.

The work started to feel manageable. And everybody rather enjoyed the
process. It was addictive.

Do you want to increase effectiveness 3-fold? Then plan your work as
a set of simple manageable self-contained and self rewarding steps.

Split Project into "Buckets"

I remember a wonderful course by Steve Manning:
"How To Write A Book On Anything
In 14 Days or Less… GUARANTEED!!"

His approach was:

1. Create a title
2. Create a list of ~10 chapters
3. Create a list of ~10 topics (buckets) inside each

chapter (each topic requires approximately ¾ of a
page of text) – so you have total of ~100 "buckets".

4. Fill the buckets with some content.
Do NOT edit. Do not return back.
Just type something into those "buckets".
Fill them in random order.

5. Edit buckets one at a time in reverse direction
(start from the end of the book and move towards
the beginning). This way each bucket could stay
on its own.

6. Do more editing ...

You can use similar approach when creating any kind
of documents (PowerPoints, Project Plans, etc.).

Similar approach is used by teachers in schools with "slow" kids.

If you ask a child to draw a picture of a ship, he will not be able to do
it and will get upset.

But you can make a simple step-by-step plan for the child:
.. get a box of pencils
.. sharpen the pencils
.. get a sheet of paper
.. get a book with pictures of ships
.. select a picture you like
.. etc.

The child can now follow this plan.
Result – he successfully creates a picture.
And he is happy and proud.

Different "Bucket Sizes" for Different People:

Some team members can execute the high level command ("draw a
ship") all by themselves. They can figure out the steps – and execute
them.

But most of people need to receive a step-by-step plan.
Some people require a very detailed plan.

A good manager should calibrate the size of the steps individually
for each team member to make them effective workers.

First Principles Thinking
First principles thinking (FPT) is thinking from scratch, actively questioning
every assumption. FPT means to reverse-engineer complicated problems,
break them down into basic elements, and then reassemble them from the
ground up.

FPT requires courage and going against rules (fresh thinking):
• "Never be afraid of doing tasks you are not familiar with.

Noah's Ark was built by an amateur. Professionals have built the Titanic."
• "The safest way to go on strike and achieve nothing

is to do everything by existing rules."

The first time I've heard about FPT was from an
interview with Elon Musk. He uses this type of
thinking to design a cheap rocket from scratch, to
re-engineer electric cars, to everything he does.

In 1989-1991 I participated in designing a first in Russia portable
myograph. As you see, the device was very small and integrated
with a laptop computer. Compare it with a prototype which was
the size of a table (b/w photo on the left).

We managed to make it small by thinking from scratch and
moving as much functionality as possible from hardware to
software.

We didn't have a lot of resources and couldn't do things right. But
we knew the key requirements, and all other pieces eventually
fell into place.

Our competitors having literally 100 times more resources
(money, people, etc.) had never finished the project. Because
they wanted to make things right. So they drew a plan, distributed
responsibilities, debated and agreed on a 5-year budget - and
they have never (NEVER) delivered a final product.

Simplicity

"There are two ways of constructing a software design; one way is to make it so simple that
there are obviously no deficiencies, and the other way is to make it so complicated that there
are no obvious deficiencies. The first method is far more difficult." - C. A. R. Hoare

"Make everything as simple as possible, but not simpler. " - Albert Einstein (1879-1955)

"Thank you, Lord, for making all necessary things simple, and all complicated things
unnecessary" - H. S. Skovoroda (1722-1794)

"Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch
of genius -- and a lot of courage -- to move in the opposite direction." - Albert Einstein (1879-
1955)

KISS principle - Keep It Simple, Stupid - is largely used by military, and is attributed to
Clarence Leonard 'Kelly' Johnson (1910-1990), who worked for Lockheed Martin

"You can see that [with a simpler toolkit] the amount of extension programming goes up
considerably. What you don't see is that the total implementation effort may be much lower
because the underlying toolkit is much simpler. There the programmers need spend much
less time reading documentation, fitting their new software into the old, etc. Sometimes less is
more. " - Philip Greenspun, https://philip.greenspun.com

https://philip.greenspun.com/

Many projects failed because their architects failed to make
things simple. They tried to make things right. As a result they
have built systems which were never quite operational and
couldn't survive change.

Find simple ways to do things.

Try to find a way to complete project in two weeks. If you can't
see that you can complete the project in 2 weeks - don't do it
immediately. Think first.

Because if you think it takes 2 weeks - it will take 2 months.
And if you think it will take 2 months - it will take a year.
And in the middle you or your boss will realize that it should be
done differently - thus you will never finish it.

F**k it, we don't need it

Prioritization is the key

Common reason of failure is that people spend
time on doing things which shouldn't have been
done at all in the first place.

Simplify the design, sacrifice some features

"Do we really need it ?" Often 10% of features takes 90% of your
programming time. By sacrificing them you may make
your project 10 times simpler.

Same principle can be applied to the features of programming
architecture. Trying to make perfect code may make your project
10 times more complex.

Warren Buffett 5/25 rule:
Write down 25 tasks you think are important.
Choose just the top five – and do only them.

Your success depends on being focused on the most
important tasks/features.
Your success depends on cutting off all tasks/features which
are secondary.

Joe Sugarman

The great marketer Joe Sugarman
has a little formula for judging any
project he gets involved in. He calls it
“ELF” (Easy, Lucrative, and Fun).
Make your project an ELF project.

Unix – Example of Simplicity of Design
Unix is the dominating OS (~2 Bln android devices, ~1 Bln iOS devices, ~1 Bln
servers in clouds, 100 Mln Macs, etc.).

Ken Thompson has created Unix OS in 1969.
Nowadays he works at Google as one of creators of the “Go” language:
- https://www.youtube.com/watch?v=sln-gJaURzk -

In this article (http://www.linfo.org/thompson.html) you will learn how
Ken Thompson has developed the UNIX operating System in assembly
language (to assist himself in playing and creating computer games)
in ~1969, then created the B-language, and later rewrote it’s
kernel in C-language developed by Dennis Ritchie in ~1972
First UNIX was running on computer with only 4K of memory!

Then Thompson returned to UCB (University California Berkeley)
and while being there in 1975-76, he introduced people there to Unix,
which started the UCB clone of Unix (BSD = Berkeley Software Distribution).
This later became the foundation of Mach OS for Steve Job’s NeXT Station,
which was later acquired by Apple, and is the heart of modern MacOS and iOS.

Linux is an independent open source POSIX implementation of Unix.
Android OS is a Google’s version of Linux (android phones & tablets).
1980s - Richard Stallman creates a free software movement (GNU project)

which led to development of numerous software tools.
1991 - Linus Torvalds, young student at the University of Helsinki in Finland,

releases (posts on the Internet under GNU license) the first version
of Linux's kernel (Ver. 0.02), which he developed as a hobby.

Linus Torvalds

Ken Thompson
(born 1943)

https://www.youtube.com/watch?v=sln-gJaURzk
http://www.linfo.org/thompson.html

Unix – a toolbox vs finished application

Unix was designed as a minimalistic set of small basic utilities and ways you can
combine them to make more complex systems. Simplicity allowed it to be very
reliable, extensible and maintainable. And eventually to win against all other
operating systems.

You have to decide very carefully whether you really need to deliver a finished
application, or if the client will be much happier with a toolbox (set of tools and
modules) giving him functionality he needs.

It is ~100 times more difficult to deliver a finished application, because you have to
test it on all supported platforms, provide documentation and customer service, work
out all small details. On the other side, finished application is not flexible and may
not fit customer needs. The bigger the client - the more flexibility he may require.

Thus it makes no sense to spend too much time on making a turn-key application for
a big client. Instead you may design a set of modules which allow to easily construct
custom applications for the client. Working with many clients you will add more
modules to the system making it more valuable to your market.

Each individual module can be small, manageable and reliable. The custom
application as a whole will be probably built by the client, so you don't have to provide
customer support on it's quality.

Thus by shifting your goal from making a compiled product to making a toolbox, you
made your work 10..100 times simpler and easier - and you made yourself 10 times
more valuable to the marketplace.

Dinosaurs
Today (as always) we face 2 conflicting requirements:

- systems get larger and more complex
- systems need to change more often - and changes should be

made faster

When things change faster and faster - simplicity becomes a "live
or die" requirement.

In many situations you literally don't have enough time to make
things "right" or complex. Or even "completely finished".

What do you prefer - a simple system which does the job - or a
system which is architectured "correctly", - but never quite works,
and can't be adapted to your requirements fast enough?

So don't try to make things right.
Make things simple instead.

Big complex systems remind me of dinosaurs. Do you remember
what happened to them? And who is now dominating the Earth?

In big organizations you simply can't get all departments to use
the same programming language, the same systems, the same
versions of software.

All you can do is establish some pretty liberal general
guidelines and rules of communication.

Distributed Systems

Simple vs "right"

Simplicity vs Politics

Be carefull when offering simple solutions to managers of big organizations.

An individual developer usually will select a simple solution.

But a manager at a big organization will, on the contrary, almost always
select the political solution, which is usually more complex and expensive.

Please note, that managers are NOT stupid. They are doing the right
political move in order to survive and grow in the organization, get more
people under them, get promoted, increase visibility and weight of their
department, etc. Yes, they are doing the right thing for them !

This right thing may not be the best thing for the organization or the
product, but managers will never admit that. And they usually will get
promoted despite losing millions of dollars and failing to build effective
systems.

Growing a Project as a Child
Let's say you started a web site with just one page.
Then you added some more.
You working one page at a time.
Each page is a finished product.
Together pages make a system - your web site.

This system growth is stable.
You always succeed, because each step is simple enough and
rewarding enough.

This is example of evolutionary development.
You start from a simple bare bones single function utility.
Then you write another one. And another.
You add features. You combine them together - and finally you have a
product.

You allow the program to grow as a child.
When the child is born - you don't know exactly what it will grow into.

May be the product itself will not be a success - but one of the
components will.

The art is to structure the development process into a set of easy and
rewarding small steps.

The art is to structure the development process so that the product
starts to be useful at early stages. And then it grows and improves with
the feedback from users.

If software is simple and useful - it can start with a 2-week project -
and then grow as a child.

If software is not simple or not useful - it will be very difficult for it to
grow or even survive, regardless of how much time and money were
originally invested, or how "right" was its design.

I wrote this - and then found that I was not the first who formulated
this. See for example www.dreamsongs.com/WorseIsBetter.html -
"Worse Is Better" by Richard P. Gabriel.

http://www.dreamsongs.com/WorseIsBetter.html

Hacker vs Architect

Example. Let's say you need a report. So you asked two
programmers (John Hacker and Bob Architect) to create it.

Bob Architect, on the other hand, is a true believer that if you do things
right - it will save you effort in the long run. (wrong)

So he started with drawing UML diagrams using Rational Rose or
TogetherJ to make proper Object Oriented design of the "report engine".
He also decided to make a proper GUI interface.

At the time when John Hacker went through 10 revisions, Bob Architect
was still busy thinking about distributing responsibilities between his
classes and interfaces, and was very proudly telling you about his elegant
design of "request manager", "cache manager" and "report manager".

Finally he made the application work - but it took him 10 times longer.
And when he finally finished, you already needed a different report. So
you asked him to change the reports. He said that it will take him long
time because your new requirements don't fit well into his object model, so
he will have to start from scratch.

John Hacker hacked a script in one hour and emailed you the report.

You looked at the result - and realized that your original requirements
were not correct. So you asked to make changes, which John
emailed you in the next 10 min.

After going back and forth 5-10 times you were completely satisfied.

You could customize the reports providing some simple parameters
on the command line or in a short text file. John sent you all the
scripts along with a short README instructions text file.

He also put the scripts on the web server and made a simple web
page for you to run the report in the browser – and either download it
– or receive via email.

Does all this sound familiar?

In this scenario, first programmer sacrificed some features (GUI, OO design),
which allowed him to complete the job much faster, and then to use user's
feedback to make multiple changes to make the "product" good and easily
maintainable.

Create "Clickable Dummy"

Projects have three basic components:
cost, schedule, scope

But figuring them out (specifying what to do,
the actual scope, cost, and schedule)
may take 30-50% of the project.

Jesse Erlbaum recommends to agree
with clients on a two-phase approach:

• 1st phase - 30-50% of cost/effort
preparing specifications and estimate
(create clickable "dummy" of an app.)

• 2nd phase - 70-50% of cost/effort
actually implementing

Jesse Erlbaum
Erlbaum Group,

New York
http://www.erlbaum.net

http://www.erlbaum.net/

From Waterfall to Agile

Analysis
Requirements

Design
Development

Testing & Integration
Deployment

Maintenance

Waterfall Agile

In 2001, a team of 17 visionary software developers
held a meeting in Utah to discuss industry problems
and possible solutions.

They later created what is known throughout the
industry as the Agile Manifesto.

The Waterfall methodology has its origins within the
manufacturing and construction industries, ...
however, the term “Waterfall” wasn't used.

A paper written in 1976 by T.E. Bell and T.A. Thayer
is when the term may have been first used.

Scrum
A scrum (short for scrummage) is a method of restarting
play in rugby football that involves players packing closely
together with their heads down and attempting to gain
possession of the ball.

Scrum is a framework for developing, delivering, and
sustaining products in a complex environment.
It is simple and effective.
Importan components are:
• product backlog
• planning sprints (sprint backlog)
• daily scrum meetings
• sprint review and retrospective

Project Management:

• Formal project management structure
(processes, procedures, and tools)

• Invested and engaged project sponsor(s)
(executives promoting the project)

• Clear and objective goals and outcomes
• Documented roles and responsibilities
• Strong change management (protect from "scope creep")
• Risk management
• Mature value delivery capabilities

(project tools, processes, and procedures)
• Performance management baseline

(for cost, schedule, and scope)
• Communication plan

Project Management Process

DevOps
What is DevOps

DevOps = Development (Dev) + Operations (Ops)

DevOps is the union of people, process, and technology.

DevOps enables formerly siloed roles
• development
• IT operations
• quality engineering
• security
to coordinate and collaborate to produce better, more reliable
products.

By adopting a DevOps culture, practices and tools,
teams gain the ability to better respond to customer needs,
increase confidence in the applications they build, and achieve
business goals faster

Azure DevOps - a Microsoft product that
provides version control, reporting,
requirements management, project
management, automated builds, testing and
release management capabilities. It covers
the entire application lifecycle, and enables
DevOps capabilities

AWS Google

Simple PM Tools
There are many DevOps tools and bug-tracking tools,
for example, Jira (https://www.atlassian.com/software/jira)
or Azure DevOps (https://dev.azure.com).
See long (~40) list here:
- https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems

Note that for small scale projects people successfully
use Google Docs and Google Sheets:
- https://moz.com/blog/visualising-time-using-google-sheets

Some software similar to JIRA:
• ClickUp
• Binfire
• Basecamp
• Pivotal Tracker
• Asana
• Clubhouse
• Trello
• ProofHub
• Kanbanize
• Notion
• Wrike
• Bitrix24

https://www.atlassian.com/software/jira
https://dev.azure.com/
https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
https://moz.com/blog/visualising-time-using-google-sheets

Vision and Enthusiasm

Nikolai Pertsov
(1924–1987)

Successful people tend to have an attitude which can be expressed as
following: "We will build it – and it will be great !"

In 1951 Nikolai Pertsov was appointed as a Director of White Sea
Biological Station of Moscow State University. When he arrived at
the place designated as Belomorskaya Biostation MSU, there was
nothing there except for a small shed – a "cabin" and several tents.

Nikolai Pertsov launched intense activity. He didn't have the
necessary funds. But he was good at captivating people with
enthusiasm. He has built a laboratory and homes, got hold of the
present fleet of several boats, laid electric and telephone lines through
miles of "taiga" (forest), provided necessary scientific and educational
equipment.

Nowadays hundreds of students and staff are comming to the bio-
station every year. Dozens of books, thousands of scientific articles,
hundreds of PhD degrees, thousands of trained professionals - this is
the result of the activity led by Nikolai Pertsov's bio-station.

The really interesting fact about the history of the station is that
almost all construction work was done by volunteers. Nikolai
Pertsov had an amazing skill of making people enthusiastic about the
project and making them wilingly work on it.

- https://en.wikipedia.org/wiki/White_Sea_Biological_Station
- https://persona.rin.ru/eng/view/f/0/21543/pertsov-nikolai-andreevich

https://en.wikipedia.org/wiki/White_Sea_Biological_Station
https://persona.rin.ru/eng/view/f/0/21543/pertsov-nikolai-andreevich

Unique Abilities

Unique Abilities:

It is very important to align the roles of team members with their
personal skills, preferences, and career goals.

Some people like to work with software, others like to do system
configurations and networking/security. Some people like math and data
analysis, others like graphical design. Some people enjoy creating
architectures and making PowerPoint presentations, others are great at
managing people.

It is a good idea to ask a "Dan Sullivan Question":

"If we were having this discussion three years from today, and you were
looking back over those three years, what has to have happened in your
life, both personally and professionally, for you to feel happy with your
progress?"

Answer to this question will help you to "match" a person with the roles
in the team. This will make team members more effective and happier.

The Dan Sullivan Question
by Dan Sullivan, 2009

If a person is asked to do a task which
he can't do or doesnt' like, it will be
bad both for him and for the task.

Self Management, Holacracy

• Holacracy is a method of decentralized management and organizational
governance.

• It claims to distribute authority and decision-making through a holarchy of self-
organizing teams rather than being vested in a management hierarchy.
- https://www.holacracy.org

• Holacracy is opposed to old hierarhical organization developed for
manufacturing and construction businesses. Nowadays every industry today
involves complex knowledge work. But IT and Data work doesn't fit well into
hierarchy. Even modern factory workers need to contribute in ways that prior
generations couldn’t imagine.

• Holacracy can be seen as a greater movement within organisational design to
cope with increasing complex social environments, that promises a greater
degree of transparency, effectiveness and agility.

• GlassFrog is the official software to support and advance your Holacracy
practice. Made by HolacracyOne, it's the most robust tool available.
- https://www.glassfrog.com/

A holarchy is a connection between holons,
where a holon is both a part and a whole.

The term was coined in Arthur Koestler's 1967 book
"The Ghost in the Machine".

Holarchy is commonly referred to as a form of
hierarchy; however, unlike hierarchy, it doesn't have
an absolute top and bottom.

Note:
Many companies use non-hierarchical approach.
For example, Facebook has hierarchy, but also
uses product teams, which span multiple silos
(multiple departments).

Silos Hierarchical Pyramid

https://www.holacracy.org/
https://www.glassfrog.com/

Parkinson Law

Book "Parkinson's Law"
by C. Northcote Parkinson
Classic - witty, brilliant.

Professor Northcote Parkinson (1909-1993) - British historian,
author, and formulator of "Parkinson's Law," the satiric dictum
that "Work expands to fill the time available for its
completion."

"Administrators make work for each other, he said, so that they
can multiply the number of their subordinates and enhance their
prestige."

His second law was intended as a jibe at government
functionaries, who he thought were inclined to expand their own
ranks indefinitely, so long as taxes could be raised.

Written in a deadpan but mercilessly funny style, Parkinson's
Economist essays were issued in book form in Parkinson's
Law, or The Pursuit of Progress (1958). Apart from the books
that made him famous, Parkinson wrote numerous historical
works, including the critically acclaimed The Evolution of
Political Thought (1958).s.

Here is the essense of some of Parkinson's main laws:

• Work expands so as to fill the time available for its completion. This law has
many consequences. For example, it shows why the British Colonial Office
has grown in number of employees as the actual number of colonies
declined - so that it employed more people when the number of colonies had
been reduced to zero than when they were at their highest number.

• Expenditure rises to meet income. (Unit costs of public services tend to
increase to consume the available funding. Data expands to fill the space
available for storage. Network traffic expands to fill the available bandwidth,
etc. Unfortunately this law is not applicable to our wallet nor to its contents.
Pity.)

• Expansion means complexity, and complexity - decay.

• Policies designed to increase production increase employment; policies
designed to increase employment do everything but.

• Democracy equals inflation (people vote for higher pay rather than for
increased production)

• Delay is the deadliest form of denial.

• The matters most debated tend to be the minor ones where everybody
understands the issues.

• Committees become less effective after they grow larger than 8 members.

Brooks Law

The Mythical Man-Month - by Frederick Brooks

Classics - based on experience from 1960s at IBM.
A required reading in most SE (Software Engineering) and
CS (Computer Science) courses.
This book has become a bible for software developers.
Brooks received the Turing Prize in 2000 (often called "the
Nobel Prize of Computing").

One of the main ideas (also called "The Brooks's Law"):

"Adding manpower to a late software project makes it later.
Artists cannot be rushed, and too many cooks will surely
spoil the broth."

See good summary here:
https://en.wikipedia.org/wiki/The_Mythical_Man-Month

Main ideas in the book:
• The mythical man-month (adding more people will make the project later)
• No silver bullet
• The second-system effect (tend to make it too complex)
• The tendency towards irreducible number of errors
• Progress tracking (incremental slippages)
• Conceptual integrity (separate architecture from implementation, keep things simple)
• The manual (document external specs)
• The pilot system (throw-away system)
• Formal documents (needed)
• Project estimation (work will take 3-times more than required for programming)
• Communication (continuous clarifications with the architect and other groups)
• The surgical team (very small team creats the main components)
• Code freeze and system versioning
• Specialized tools (good to share by team)

Brooks Law and open software projects:
Jamie Zawinski: Apache project, Linux Kernel, and other large software projects, the
bulk of the work is done by a few dedicated members or a core team -- what Brooks
calls a "surgical team." "In most open source projects," says Zawinski, "there is a
small group who do the majority of the work, and the other contributors are definitely
at a secondary level, meaning that they don't behave as bottlenecks." ... "Most of the
larger open source projects are also fairly modular, meaning that they are really
dozens of different, smaller projects. So when you claim that there are ten zillion
people working on the Gnome project, you're lumping together a lot of people who
never need to talk to each other, and thus, aren't getting in each others' way."

Brian Behlendorf (Apache & Collab.net): "We don't consciously think about it, but I
think that the philosophy of keeping things simple and pushing out almost anything
extraneous or nonessential to external modules has been followed fairly carefully in
Apache. We've also been fairly successful (I think) in 'federalizing' the Apache
process to sister projects."

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

Peter Drucker
Peter Ferdinand Drucker was a management consultant, educator,
and author, named "the founder of modern management".
- https://en.wikipedia.org/wiki/Peter_Drucker

Peter Ferdinand Drucker
(1909-2005)

Key Ideas:

• Decentralization and simplification is better than "command and control".
• The prediction of the decline of the "blue color" worker.
• The concept of "outsourcing" ("front room" and "back room").
• The importance of the nonprofit sector (third sector).
• Respect for the worker. People are an organization's most valuable resource. A

manager's job is both to prepare people to perform and to give them freedom to do so.
• The need for "planned abandonment" of old methods.
• A belief that taking action without thinking is the cause of every failure.
• The importance of volunteering
• The need to manage business by balancing a variety of needs and goals, rather than

subordinating an institution to a single value.
• A company's primary responsibility is to serve its customers. Profit is not the primary

goal, but rather an essential condition.
• "Do what you do best and outsource the rest" is a business tagline first "coined and

developed" in the 1990s by Drucker. Peter Drucker on marketing:
"Because the purpose of business is to create a
customer, the business enterprise has two - and
only two - basic functions: marketing and
innovation. Marketing and innovation produce
results; all the rest are costs. Marketing is the
distinguishing, unique function of the business."

https://en.wikipedia.org/wiki/Peter_Drucker

Book "The One Minute Manager"
by Spencer Johnson & Kenneth H. Blanchard

Classical bestseller.
How to achieve incremental improvement
using 3 tools:
1. One minute goals (on single sheet of paper)
2. One minute praise
3. One minute reprimand

One Minute Manager

1. Set one minute goals

• plan the goals together, have people
write them on a single page, with due
dates.

• ask them to review their most important
goals each day

• ask them to periodically check if their
behavior matches their goals. If not -
rethink their behavior or goals.

2. Give one minute praisings

• Praise people as soon as possible.
• Be specific about what they did right
• Tell people how good you feel about

what they did right, and how it helps
• Pause for a moment to allow people

time to feel good about what they've
done

• Encourage them to do more of the
same

• Make it clear you have confidence in
them and support their success

3. Give one minute reprimands (re-
directs) to address mistakes

First half-minute – reprimand

• Do it as soon as possible
• Confirm the facts first
• Review the mistake together, be specific
• Express how you feel about the mistake

and its impact on results
• Pause... Be quiet for a moment to allow

people time to feel concerned about
what they've done.

Second half-minute – re-connect

• Let them know that they're better than
their mistake, and that you think well of
them as a person

• Remind them that you trust in them, and
support their success

• Realize that when the reprimand is over,
it's over

One Minute Manager Meets the Monkey
Book "The One Minute Manager Meets the Monkey"
by William, Jr. Oncken, et al

Humorous and highly effective way to learn how to start delegating business tasks.

Monkey is the next move ...

Who owns the monkey?
The book describes many situations when subordinates put monkeys on their
boss's back. And teaches tips and tricks on how managers can avoid these leaping
monkeys and put them back on the suborinates backs.

Example, a person goes to the boss and says "Boss, we have a problem".
This is a dangerous situation, because a monkey representing this problem may
leap from subordinate back to boss's back – if the boss agrees to do something
about this problem.

How to avoid those leaping monkeys?

Here is an example:
"Stop right there!

We can never have a problem.
It is either you have a problem – and I will advise you what to do.
Or I have a problem – then I will tell you what you will need to do for me.
In any case you will be the one doing all the work.
So, what's the problem?"

Power & Growth Mindset

Power: Why Some People Have It -
and Others Don't
by Jeffrey Pfeffer

How to become more powerful.

Jeffrey Pfeffer, professor of
organizational behavior at Stanford
University, states that intelligence,
performance, and likeability alone
are not the key to moving up in an
organization.

He asserts that vital factors are:
• self promotion
• building relationships
• cultivating a reputation for control

and authority
• perfecting a powerful demeanor

Mindset: The New Psychology of
Success
by Carol S. Dweck

Carol Dweck has coined
the term "Growth Mindset"

If you reward correct results, people
will learn to avoid risk and failure.

If you reward efforts, attempts,
invention, and do not punish for
failure - people will become much
more effective and in the end achieve
better results.

"Getting Things Done"
by David Allen

"You mind is for having ideas, not for holding them" – David Allen

GTD is a manual for stress-free productivity.
It teaches you to set up a system of lists, reminders and weekly reviews, in
order to free your mind from having to remember tasks and to-dos and
instead let it work at full focus on the task at hand.

The book was published in 2001 (20 years ago).
Nowadays 20-years later you can easily spot the similarity between the
system proposed in the book with modern practices of software
development (Agile/Scrum methods).

Here is a good short summary of the book:
- https://fourminutebooks.com/getting-things-done-summary/ -

David Allen proposes a system based on two principles:
• define the next executable action for every theme
• log your actions in a system which can be trusted.

Main principles:
• Use a “collection bucket” to store things outside your mind.
• Create a “next actions” list for all your projects.
• Do a weekly review of everything, or else!

Specifically the system consists of 5 steps:
• collecting
• processing
• organizing
• reviewing
• executing

https://fourminutebooks.com/getting-things-done-summary/

Daniel Goleman: There are six leadership styles - coercive,
authoritative, affiliative, democratic, pacesetting and coaching. The
most effective leaders are able to change between these styles when
appropriate.

Frederick Herzberg: Punishments and rewards are ineffective tools
for motivating people. Instead, try enriching their jobs by removing
controls, giving employees more information, and giving access to
greater challenges.

Manzoni and Barsoux: Employees who are viewed as weak
performers often live down to expectations because the supervisor's
attempts at performance management result in worse rather than
better performance.

Carol Walker: New managers often perform poorly because they
have not learnt the skills of delegating, getting support from above,
projecting confidence, focusing on the big picture, and giving
constructive feedback.

Marcus Buckingham: Great managers do not try to change their
employees. Instead, they tweak roles to capitalize on individual
strengths, create personalised incentives, and tailor coaching to
unique learning styles.

Quotes

Kim and Mauborgne: Harmony in the workplace required fair
process, including inviting input from employees affected by a
decision, explaining the thinking behind decisions, and providing
clear expectations.

Chris Argyris: An organization's smartest and most successful
people are often poor learners because they have not had the
opportunity for introspection that comes with failure.

Banaji, Bazerman and Chugh: Everyone has unconscious biases
which affect decisions. To counteract these biases, gather better
data, get rid of stereotypical cues, and broaden your mind-set.

Katzenbach and Smith: A good team has a meaningful common
purpose, specific performance goals, a mix of complementary skills,
a strong commitment to how the work gets done, and mutual
accountability.

Gabarro and Kotter: To have a good relationship with your boss,
focus on compatible work styles, mutual expectations, information
flow, dependability and honesty, and good use of time and
resources.

From book "HBR's 10 Must Reads on Managing People"

Thomas F. Gilbert

Thomas F.
Gilbert

(1927–1995)

Gilbert classified important and manageable factors affecting performance
in a 2 × 3 matrix that he called his Behavior Engineering Model (BEM).
BEM identifies six variables necessary to improve human performance:

+-------------+-------------+-----------+-------------+
| | Stimulus | Response | Consequence |
+-------------+-------------+-----------+-------------+
| Environment | information | resources | incentives |
+-------------+-------------+-----------+-------------+
| Individual | knowledge | capacity | motives |
+-------------+-------------+-----------+-------------+

BEM Example:

• psychologist, founder of Performance Engineering
(a.k.a. Human Performance Technology (HPT))

• book "Human Competence: Engineering Worthy Performance".
• realized that formal learning programs often only change

knowledge, not behavior.
• worked with the behavioral psychologist B. F. Skinner at Harvard

University and with Ogden R. Lindsley in Lindsley's laboratory at
Metropolitan State Hospital in Waltham, Massachusetts

• specialized in statistics, testing and measurement.
• https://en.wikipedia.org/wiki/Thomas_Gilbert_(engineer)

Simple Performance Model:
• Quality (Accuracy, Class, Novel)
• Quantity (Rate, Timeliness, Volume)
• Cost (Labor, Material, Management)

https://en.wikipedia.org/wiki/Thomas_Gilbert_(engineer)

Human Performance Technology (HPT)

Human Performance Technology (HPT),
a.k.a. Human Performance Improvement (HPI)
or Human Performance Assessment (HPA)

Process improvement methodologies such as:
• Lean management

- https://en.wikipedia.org/wiki/Lean_manufacturing -
• Six Sigma (tools to improve business processes)

- https://en.wikipedia.org/wiki/Six_Sigma -
• Lean Six Sigma

- https://en.wikipedia.org/wiki/Lean_Six_Sigma -
• organization development
• motivation
• instructional technology
• human factors
• learning
• performance support systems
• knowledge management
• training

- https://en.wikipedia.org/wiki/Human_performance_technology

The origins of HPT can be primarily
traced back to the work of
• Thomas Gilbert
• Geary Rummler
• Karen Brethower
• Roger Kaufman
• Bob Mager
• Donald Tosti
• Lloyd Homme
• Joe Harless

International Society for
Performance Improvement

(ISPI)
- https://ispi.org/default.aspx -

DMAIC Cycle
Define-Measure-Analyze-Improve-

Control

https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Six_Sigma
https://en.wikipedia.org/wiki/Lean_Six_Sigma
https://en.wikipedia.org/wiki/Human_performance_technology
https://ispi.org/default.aspx

Project Management

• Crystal clear understanding of the requirements. Involve all business stakeholders into the

planning process. Make sure they agree on the plan.

• Crystal clear understanding of priorities: what is important – and what is "nice to have".

• Concentrate only on important features, sacrifice the rest.

• Simplifty, simplify, simplify.

• Split big job into small pieces, small steps.

• Grow project as a child from few features to full-featured product.

• Military hierarchical management is not effective. Respect workers, leverage their brains,

give them freedom to be effective, to communicate and collaborate.

• Give people taks that match their abilities.

• Create safe and engaging atmosphere.

What we have learned:

